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FALCON: a Networked Drone System for Sensing,
Localizing, and Approaching RF targets

Zhambyl Shaikhanov, Ahmed Boubrima, and Edward W. Knightly

Abstract—We present FALCON, a novel autonomous drone
network system for sensing, localizing, and approaching RF
targets/sources such as smartphone devices. Potential applications
of our system include disaster relief missions in which networked
drones sense the Wi-Fi signal emitted from a victim’s smartphone
and dynamically navigate to accurately localize and quickly
approach the victim, for instance, to deliver the time-critical
first-aid kits. For that, we exploit Wi-Fi’s recent Fine Time
Measurement (FTM) protocol to realize the first on-drone FTM
sensor network that enables accurate and dynamic ranging of
targets in a mission. We propose a flight planning strategy that
adapts the trajectory of the drones to concurrently favor local-
izing and approaching the target. Namely, our approach jointly
optimizes the drones’ diversity of observations and the target
approaching process, while flexibly trading off the intensities of
the potentially conflicting objectives. We implement FALCON
via a custom-designed multi-drone platform and demonstrate
up to 2× localization accuracy compared to a baseline flocking
approach, while spending 30% less time localizing targets.

Index Terms—Fine Time Measurement sensor network, au-
tonomous flight planning, networked drone system, localization
and approaching

I. INTRODUCTION

In this paper, we design, implement and experimentally
evaluate FALCON. Prior work in drone-network localization
has employed on-drone antenna arrays to sense angle of
arrival (AoA) from a target. Unfortunately, antenna arrays have
large physical size, e.g., nearly a meter scale [2], and require
significant time to compute AoA, e.g., 45 sec per observation
[3]. Likewise, prior on-drone methods employing a single
antenna per drone sensed RSSI to localize targets, e.g., [4].
However, as RSSI is only coarsely related to distance, [4] had
localization errors as high as 10 meters. In contrast, we design
FALCON as a single-antenna system with nearly an order of
magnitude better accuracy than [4] and with computational
times in the msec scale.

In addition, in time-critical drone missions such as disaster
relief and emergency scenarios, approaching is of great value
as it enables important services such as fast delivery of life-
saving first-aid kits and immediate close-in inspection of the
situation for an effective rescue plan. Moreover, approach-
ing targets is beneficial as measurement fidelity is typically
improved at a closer range and faster data exchange can
be achieved when the drones need to communicate with
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the target. Unfortunately, prior work has decoupled the ap-
proaching problem from localizing. For example, e.g., [5]
mimics the flocking behavior to approach a target whereas
[6] considers optimal sensor placement to localize a target. In
contrast, because approaching and localizing can be conflicting
objectives, we incorporate both, which we will show has a
profound effect on system dynamics and performance.

To realize FALCON, we make the following three contri-
butions. First, leveraging the ubiquity of Wi-Fi [7]–[10], we
realize on-drone target-to-drone ranging estimates via Wi-Fi
Fine Time Measurement (FTM) and integrate this capability
with networked sensing and mission planning. Standardized
in 2016 [11], FTM measures the time of flight (ToF) of Wi-
Fi signal traveling from a client to a Wi-Fi access point.
Prior work has employed the protocol to self-position a client,
with the client performing multi-lateration to localize itself
in the indoor environment with many stationary access points
distributed in space, e.g., [12]. In contrast, we, for the first
time, use FTM as a mechanism to actively sense target-
to-drone range estimates, which we employ to dynamically
navigate a network of drones in a mission.

Second, we propose a flight planning strategy to simulta-
neously approach, localize, and track targets. We tackle these
objectives concurrently by jointly exploiting drones’ diversity
of observation and dynamics of approaching in a mission.
We provide a tunable parameter λ that allows modification of
flight patterns to weight the mission-planner’s objectives for
localization accuracy and approaching dynamics. This enables
FALCON drones to be flexible and adjust to a range of
behaviors in a mission in addition to improving measurement
resolution and realizing approaching-critical tasks. Likewise,
our flight strategy is agnostic to sensing technology and can
be generalized to fit different range sensing mechanisms.

Third, we implement FALCON on a custom-designed multi-
drone platform and perform an extensive experimental evalu-
ation. We begin with a controlled experiment in which we
analyze target-to-drone ranging error by performing on-drone
distance estimation from predefined locations. The results
indicate that a 95-percentile error is approximately ±2m.
Moreover, errors are consistent for different ranges due to
the dominant line-of-sight (LoS) property of air-to-ground
channels and the linear relationship of ToF measurements
and distances. To understand the impact of λ on the trade-
offs between accuracy gains due to diverse observations from
angular spread vs. increased travel distance to reach a target,
we perform missions with a known target position and differ-
ent λ values. As a baseline, we consider a flocking scheme
that navigates drones to flock and move directly towards the
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Fig. 1: Flight planning following (a) the sensors positioning strategy, (b) the flocking scheme and (c) FALCON

latest estimated target location. We find that, with two drones
in the network and λ = 2, FALCON can increase average
angular spread by 2.2× at the expense of only 27% additional
average travel distance when compared to the flocking scheme.
Moreover, as λ increases beyond fourteen, FALCON mimics
the flocking scheme by heavily focusing on approaching.

Next, we perform missions where two drones actively
sense and continually reposition to localize and approach an
unknown target. Our findings reveal that, compared to the
flocking scheme, FALCON consistently and rapidly acquires
information about the target position because of its diverse
observation feature. Consequently, FALCON localizes a tar-
get 2× more accurately and in 30% less time. Likewise,
we show that even a single FALCON drone can exploit
diverse observations throughout a mission, achieving 2.3m
mean localization accuracy and spending only around a minute
localizing a non-mobile target. To understand the contribution
of additional drones on localization accuracy and localization
time, we perform missions with up to four networked drones
and demonstrate that the flocking approach needs more drones
to improve accuracy whereas FALCON exploits informative
locations to achieve better results with fewer drones.

The remainder of this paper is organized as follows. In
Section II, we present the FALCON framework, analyze one-
shot sensor positioning and, building on that, describe our
flight planning strategy. In Section III, we present the design
of the on-drone FTM sensing mechanism and describe our
multi-drone platform. In Section IV, we present the key results
from our experimental evaluation of FALCON as well as
the benchmarking baselines. In Section V, we provide an
overview of the related work. Finally, we provide a discussion
of potential extensions in Section VI and conclude the paper
in Section VII.

II. FALCON FRAMEWORK

In this section, we first provide an overview of the FALCON
design. Next, we analyze one-shot positioning of sensors, and
building on that foundation, we then present the FALCON
flight planning strategy.

A. Design Overview
On-drone Sensing: In the design of FALCON, first, we

realize target-to-drone range sensing for networked drones.

Unlike existing on-drone sensing systems that either require
bulky antenna arrays and perform time-consuming AoA com-
putation or employ RSSI which is only coarsely related to
distance, drones in FALCON accurately and quickly range
targets by sensing ToF of Wi-Fi signals via FTM. We discuss
our on-drone target-to-drone ranging mechanism in Section
III-B.

Flight Planning: Next, we design a flight planning strategy
that navigates networked drones to approach, localize, and
track targets in a mission. For the first time, we consider
these objectives concurrently so that drones can improve
measurement resolution and realize approaching-critical tasks
in addition to localization and tracking. For that, we propose
to jointly exploit diverse observation of drones and their
dynamics of approaching targets.

To illustrate FALCON’s design principles, Fig. 1 shows a
simplified example of FALCON compared to two fundamen-
tal classes of prior approaches. We consider that networked
drones launch a mission from nearly co-located positions, from
the bottom-left side of the search area in this example. The
drones could have been transported to the area as a group,
for instance, on a first responder vehicle, or they might have
already been positioned there, possibly at a charging station.
We consider that the drones perform a mission as a team,
cooperating and coordinating.

In the sensor positioning strategy shown in Fig. 1(a), drones
spread out around the target, to different sides of the area.
Spreading enables drones to view the target from diverse
locations and collect statistically independent samples, which
is favorable for localization accuracy. However, the problem
with this approach is the extra distance travelled for severely
battery-constrained drones. Even worse, since this extra dis-
tance increases with search area, such an approach increasingly
risks mission failure (inability to approach, localize, and track)
in larger areas. On the other hand, drones realizing a flocking
scheme, shown in Fig. 1(b), fly directly to the latest estimated
target position in the formation of a flock. In the best-case
scenario, when drones sense the target precisely throughout
a mission, the scheme helps to get to the target quickly.
However, we will show that flocking drones often navigate in
the wrong direction due to imperfect sensor measurements and
thus the entire flock goes off course. In FALCON, we design
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(a) Observing a target from similar locations

(b) Observing a target from diverse locations

Fig. 2: Two target-to-drone range sensing drones

a flight strategy in which drones dynamically spread out and
approach while they actively sense the target. As shown in Fig.
1(c), spreading out ensures accurate localization as it provides
spatially independent samples, while approaching enables fast
advancement to the target. In addition, we provide flexibility
to configure the intensity of spreading and approaching which
allows drones to adjust to different mission requirements and
conditions.

In addition to multiple drones, we will show that FALCON
can perform a mission even with a single drone, provided
the drone speed is sufficiently greater than the target’s speed.
Namely, during the flight, even a single drone is collecting
ranging samples at different spatial locations. With the proper
flight pattern to collect sufficiently independent samples, these
single-drone measurements can be used for multi-lateration.

B. One-shot Positioning of Sensors For a Known Source

Diversity of observation is a critical aspect of FALCON
flight planning. To characterize and quantify it, we first analyze
one-shot positioning of sensors for a known source [6]. With
this foundation, we develop a strategy to address our problem
of unknown target location and mobile drones.

To demonstrate the significance of diverse observation,
consider Fig. 2 in which two drones range a target and then
fuse their measurements to gain information about the target
location. The averages of the measurements are depicted as
dotted lines, while standard deviations are shown as blue
and brown segment areas for the respective drones. Once
information is fused, the red area indicates the most likely
location of the target. We designate it as the confusion area.
Notice that as drones get close to each other, as in Fig.
2(a), the confusion area expands, indicating poor observation
diversity and hence limited information about target location.
On the other hand, spreading out and observing the target
from different views, as in Fig. 2(b), provides a more focused

estimate of the target location, demonstrated as a shrinking
confusion area.

Before characterizing the confusion area, we first introduce
some notation. For ease of exposition, we consider a search
area P in 2D which is discretized into a grid such that
algorithms can perform operations on it. N sensors (drones
in the context of flight planning) and a source are positioned
in that area. We denote the location of sensor i as Si = (xi, yi)
and the location of the source as U = (xu, yu). Each sensor i
ranges the source as di = ri + εi where ri = ||Si −U || and ε
is a standard Gaussian noise with zero mean and σ2

i variance.
Then, sensors can share their data, forming vectors of ranges
d = [d1, ..., dN ] and r = [r1, ..., rN ] as well as a covariance
matrix, which we denote by Σ .

To characterize the confusion area, likelihood information
of finding the source can be retrieved from d and expressed
as

Ld =
1

(2π)N/2|Σ|1/2
e−

1
2 (d−r)

TΣ−1(d−r) , (1)

where |Σ| is the determinant of Σ. When Ld is flat, there is less
information about the source location, whereas an abundance
of information is characterized by Ld being sharply peaked.

Therefore, to quantify the source location information con-
tained in the confusion area, a common method is to measure
sharpness of the likelihood via Fisher Information Matrix [6]
as

F = E{(∇U logLd)(∇U logLd)
T } , (2)

where ∇U logLd is the gradient of the log likelihood function
with respect to the source location. The matrix F can be
interpreted as the curvature of the log-likelihood function and
indicates how well U can be estimated from d. In our example,
F can also be expanded as [13]

F =

N∑
i=1

 (xu−xi)
2

σ2
i r

2
i

(xu−xi)(yu−yi)
σ2
i r

2
i

(xu−xi)(yu−yi)
σ2
i r

2
i

(yu−yi)2
σ2
i r

2
i

 . (3)

Applying trigonometric substitution, it can then be simplified
to

F =

N∑
i=1

 sin2(φ(Si))
σ2
i

sin(2φ(Si))
σ2
i

sin(2φ(Si))
σ2
i

cos2(φ(Si))
σ2
i

 , (4)

where φ(Si) = tan−1( yi−yuxi−xu
) and denotes the angle between

Si and U with reference to the global X coordinate. Observe
that in Eq. (3), the confusion area is a function of the locations
of the sensors, and it is further expressed by the angular
placement of the sensors in Eq. (4). To quantify the source
location information with a single scalar value, we use the
determinant of F , which can be computed as

D =

N∑
i=1

N∑
j>i

sin2(φ(Si)− φ(Sj))

σ2
i σ

2
j

. (5)

We refer to D as total information as it quantifies the source
location information contained in the confusion area, with a
smaller confusion area indicating greater total information.

First, notice that with one sensor and N = 1, D in Eq. (5)
equals zero for any source location; therefore, at least N ≥ 2
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sensors are required for the technique. Next, observe that the
total information is described by the angular spread between
neighboring sensors, sin2(φ(Si) − φ(Sj)). For given sensor
range measurements, the sensor placement technique aims to
achieve the highest possible D by maximizing angular spread
between all neighboring sensors in the network. Considering
Fig. 2 with range measurements of equal mean and the same
variances, positioning drones 90◦ with respect to the target
results in the maximum total information. When more than two
sensors are involved in positioning a target, the technique takes
into account the angular spread of all two-pair combinations
of the sensors.

C. Flight Planning

In contrast to the one-shot framework above, here we
remove the assumption of a known target; instead, a network of
drones actively sense and autonomously navigate to localize,
approach, and track a target. To do so, each drone estimates
a range to target. Next, the drones share their estimates
along with their current GPS coordinates, each of which
represents a different perspective on the target position. The
drones then update their target estimation by fusing their
own range estimate with the newly received information from
other drones along with past information. Subsequently, each
drone computes its next waypoint to best enable both accurate
localization and fast advancement to the target, by flying to
the most informative waypoint for the mission objective. To
consistently improve the accuracy of the target estimation as
well as approach it at the same time, the networked drones
continually execute these steps as they progress in a mission.

We extend the notation from Section II-B to incorporate
temporal information such that Si,t = (xi,t, yi,t) denotes the
location of drone i at a discrete time t as observed via GPS
while Ûi,t = (xû,t, yû,t) represents the latest estimated loca-
tion of the target at time t. For ease of exposition, we consider
a search area P of rectangular shape that has (xmin, ymin) and
(xmax, ymax) waypoints, fixed drones velocity v, and fixed
update frequency f for exchanging range estimates and GPS
data and updating their reposition waypoint decisions. To avoid
collision, drones keep a minimum distance cth between each
other and ath designates the desired target-approach threshold
as specified by the mission. It can be set to zero to indicate
that the drones should get as close to the target as possible
without colliding.

Then, the problem of flight planning is to compute mission
waypoints Sk,t+1 for all networked drone ∀k ∈ N for the
duration of the mission, as long as drones have sufficient
energy to operate.

Challenges: The first challenge is a reciprocal effect in
which flight planning impacts target estimation while target
estimation influences flight planning decisions. Specifically,
networked drones account for their current location at t to
estimate the target location Ût, while Ût, on its turn, defines
the drones next reposition waypoints. This suggests that drones
should consistently reposition to informative waypoints in
order to enable accurate target estimation and approaching.
Second, the drones have constrained initial position which

may be nearly co-located starting location in a mission. This
condition is highly unfavorable for target localization as it
initially yields extremely inaccurate target estimation due to
poor observation diversity. Consequently, drones should start
realizing diverse observations as soon as the mission begins.

Optimization: In FALCON, we propose a distributed and
real-time flight planning strategy where each networked drone
k computes its next reposition waypoint Sk,t+1 by performing
the following optimization:

Sk,t+1 = argmax
{Si,t+1}i=N

i=1

N∑
i=1

N∑
j>i

sin2(φ̂t(Si,t+1)− φ̂t(Sj,t+1))

σ2
i σ

2
j d̂t(Si,t+1)

λ
d̂t(Sj,t+1)

λ

(6a)
subject to if k = i (or k = j), then (6b)

Sk,t+1 = (xk,t+1, yk,t+1) (6c)
xmin ≤ xk,t+1 ≤ xmax (6d)
ymin ≤ yk,t+1 ≤ ymax (6e)
||Sk,t+1 − Sk,t|| ≤ v/f (6f)

otherwise (6g)
Si,t+1 = Si,t (6h)

In other words, at each epoch, each drone k considers its speed
v, update frequency f , and current position Sk,t to obtain a
set of candidate reposition waypoints in P indicated in Eq.
(6b-6f). Taking into account neighboring networked drones
and their recent GPS coordinates in Eq. (6g-6h), the drone
computes its next best reposition waypoint by maximizing
angular spread sin2(φ̂t(Si,t+1)− φ̂t(Sj,t+1)) between drones,
while also minimizing the distance, d̂t(Si,t+1) to the target in
the objective function in Eq. (6a). We describe the algorithm’s
key aspects as follows.

1) Unknown Target Location: In FALCON, drones estimate
the location of the target and continually improve those
estimations as a mission progresses. To do so, at each epoch,
each drone k for ∀k ∈ N first shares its individual target-
to-drone range estimate dk,t and current GPS coordinate Sk,t
with other drones in the network. Then, they use all the data
to estimate the target Ût.

Initially, when networked drones start a mission and no prior
target estimation is available, they employ a least-squares filter
to develop an initial estimate of the target’s location, thereby
minimizing estimation error in a least-squares sense. As they
progress in a mission and obtain more diverse observations,
the drones employ both the new and previous target location
estimates. For that, we implement an Extended Kalman Filter,
a well-known approach for many analogous problems, e.g.,
[14]–[16]. Following the predict and update phases of the
filter, drones revise their estimate of the location of the target
leveraging both the current and past range estimates of all
drones. Hence, the flight planning strategy combined with
filter-based measurement fusing enables accurate target local-
ization. As more drones are involved in a mission, FALCON
further improves the localization accuracy and localization
convergence time by taking advantage of an increasing number
of measurements in a given epoch.
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2) Flight Planning over Time: Unlike static sensors in
one-shot sensors positioning, drones in FALCON can take
advantage of their mobility and reposition to more informative
locations throughout a mission. For that, a drone computes a
set of physically reachable candidate reposition waypoints at
each epoch by taking into account its speed, update frequency
and current location. To have a different perspective of the
target position, each drone considers all other drones in the
network and their current locations as indicated by Eq. (6g-6h).
Then, to decide on the best next reposition waypoint at t+ 1,
drone k computes the total target information by considering
the angular spread between each of its candidate reposition
waypoints Sk,t+1 = (xk,t+1, yk,t+1) and the latest estimated
target position Ût = (xû,t, yû,t) as

φ̂t(Sk,t+1) = tan−1(
yk,t+1 − yû,t
xk,t+1 − xû,t

). (7)

When focusing on the diverse observation aspect of the
strategy, the expression

sin2(φ̂t(Si,t+1)− φ̂t(Sj,t+1))

σ2
i σ

2
j

(8)

provides incentive to maximally spread drones out over time
as indicated in the objective function in Eq. (6a). This feature
is particularly important in flight navigation as it enables
localization accuracy improvement as the mission progresses.
This is especially critical when drones just started a mission
and their estimated target position may be far away from
the true target location. However, as drones actively sense
and spread out, their belief about the target location more
accurately reflects the true target location.

3) Dynamics of Approaching: Another important aspect of
the proposed flight strategy is the approaching feature which
is represented as an inverse of d̂t(Si,t+1) in the objective
function in which

d̂t(Si,t+1) = ||Ût − Si,t+1||. (9)

Due to symmetry stemming from two-pair neighboring drones,
there is also d̂t(Sj,t+1) with index j in the function. We
provide the mission planner with the flexibility to control the
rate of approaching a target via a parameter λ. Serving a key
role in the objective function, λ balances the importance of
approaching vs. diverse observation. In return, diversity of
observation impacts localization accuracy while dynamics of
approaching impacts total travel distance in a mission.

In one extreme, when λ is chosen to be large, drones will
fly nearly directly towards the estimated target with almost no
spreading. Provided they are traveling in the correct direction,
this would yield minimal total travel distance. However, this
may not be the case as if λ is too large, localization accuracy
may suffer due to lack of diverse observation. On the other
extreme, when λ is very small, drones focus on diverse
observation and will localize a target as accurately as possible.
In this case, the distance traveled would be increased as the
drones would fly to spread out in the search area, and would
not have incentive to approach the target. Thus, in FALCON,
λ provides the flexibility to choose between these trade-offs
based on the mission requirements. We experimentally explore
these tradeoffs in Section IV.

D. FTM-based on-drone sensing

The Wi-Fi FTM protocol provides a time of flight estimate
(ToF) between an FTM initiator (client) and an FTM responder
(Wi-Fi access point) with nanosecond resolution [17], [18].
Considering transmission frequency and the speed of light,
FTM enables meter-level ranging accuracy between the client
and the access point [11], [19]. We leverage the ToF data that
is collected by our on-drone FTM devices in order to obtain
distance values di from each drone i. We then use Eq. (5)
to estimate the target location as previously discussed in this
section.

Furthermore, we propose to adjust the λ diversity parameter
adequately depending on the quality of the FTM sensor data.
Indeed, if measurements are too noisy or the estimation error is
high, we tune λ to a lower value to focus more on spreading.
Conversely, if measurements are of high quality and drones
need to reach the target quickly, we then adjust λ to a higher
value to emphasize approaching.

III. EVALUATION SETUP: FTM-ENABLED MULTI-DRONE
SYSTEM AND DRONE FTM DATASET

FALCON leverages the ubiquity of Wi-Fi technology [7]–
[10] and its recent FTM protocol to realize target-to-drone
range sensing. We integrate FTM with our drone network
infrastructure to enable the networked drones to realize the
objectives described in Section II. We create a target-to-drone
ranging dataset by ranging a target via FTM-enabled drones in
an outdoor environment. We perform in-the-field missions to
analyze the impact of various factors on FALCON and other
baseline flight planning strategies and also use the dataset to
emulate additional scenarios.

Fig. 3: FALCON drone platform

A. Multi-Drone Infrastructure

To realize FALCON, we extend the open-source multi-drone
platform [4], [20] with three main components.

Drone Platform: Our drones are made of durable and
lightweight carbon fiber frames and equipped with navigation
sensors such as GPS and gyroscope as shown in Fig. 3.
Each drone has two main control blocks, Flight Controller
and Companion Computer, that assist it in navigation. The
Flight Controller is resource-constrained embedded hardware
that focuses on communicating with on-board sensors and
managing dynamics of the flight as directed by mission logic.
The Companion Computer is a more powerful embedded
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computer that executes the mission logic. We utilize an UP-
Board with an Intel Atom x5 Z8350 quad core processor
running Linux as our Companion Computer.

Software: FALCON integrates a custom designed API that
abstracts underlying complexities of avionics in the system.
It provides convenient methods for coordinating and sharing
sensory data between drones in a mission. In addition, the API
helps to analyze each building block of FALCON separately
and to build an emulator that can run a mission on experimen-
tal dataset.

Communication: Drones in FALCON are tetherless and do
not require a ground control station for communication and
data sharing. They establish an ad hoc network amongst each
other and maintain continuous communication with each other
throughout a mission via Wi-Fi.

B. FTM On-Drone Platform

To enable on-drone FTM, we first considered different
network devices that support IEEE 802.11mc FTM capability.
Ideally, we wanted to have a compact and lightweight device
like a pocket-sized USB Wi-Fi dongle with a Wi-Fi chipset
that supports IEEE 802.11mc FTM protocol so that drones
can carry and perform missions with it. Unfortunately, as of
this writing, no such device is yet available in the market.
Most of the FTM compatible chipsets such as Intel AC8260
are, at this moment, dedicated to large systems like desktop
computers and laptops. One available miniature device with
IEEE 802.11mc FTM support is an IoT device provided by
CompuLab. By modifying the device and leaving only integral
components, we integrate it on FALCON drones. At the end,
the device adds an extra 200g weight and takes 11cm ×
8.5cm × 3.5cm space on the drone platform (which fits
our drone allowed payload). Next, we establish a connection

(a) (b)

Fig. 4: (a) FALCON with on-drone FTM and (b) IEEE
802.11mc FTM compatible IoT device

between the IoT device and the drone’s Companion Computer
to enable data exchange between the IoT device that houses
FTM specific hardware and firmware and the Companion
Computer that runs the mission logic. For that, we first
connect those two devices via an Ethernet cable as shown
in Fig. 4(a). We implement multiple software routines to (1)
initiate the FTM Responder scan, (2) configure the FTM
parameters based on mission requirements, and (3) process

collected FTM measurements on the Companion Computer. In
the implemented software, we create an SSH PIPE interface
between the devices and access the IWLWIFI driver of the
IoT device via the IW command in the Companion Computer.
We then pass the command line arguments to trigger the
search of the nearby FTM Responder, configure the FTM
parameters (such as the desired bandwidth and the number
of FTM samples) and access ToF measurements, eventually
computing range values.

C. Target-to-drone Ranging Dataset

Once we realize on-drone FTM, we collect experimental
data of FALCON drones ranging a target via onboard FTM.
We then create a dataset that we later employ to emulate some
missions.

Fig. 5: Drone FTM dataset
To comply with urban Federal Aviation Administration

(FAA) regulations [21] and to perform experiments in a
controlled environment, we select a large football stadium
[22] as a mission operation region. First, we configure an IoT
device similar to the one in Fig. 4(a) as an FTM Responder
and designate it as the target in this experiments. We put it on
a 1.5m height tripod stand and position it in the stadium. Next,
we fly a drone in a waypoint fashion, traversing the entire the
stadium. While flying, the drone performs FTM measurements
and computes range estimates to the target.

Fig. 5 is an example of one map out of a total of five in
the database. The dataset has high spatial resolution because
the drone collects data every 1m. It also has a multitude of
samples at each location since the drone collects dozens of
measurements at every point. Overall, 100s of drone batteries
have been recharged in the effort to create this dataset.

IV. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of
FALCON and baselines and study a broad set of performance
factors from target-to-drone ranging error to an increasing
number of drones in the network.

A. Target-to-drone Ranging

A FALCON drone incorporates the error of target ranging to
compute its next waypoint to maximize localization accuracy.
To range a target, it observes ToF of the RF signal from
that target via on-board FTM device. Any ToF error such as
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Fig. 6: Field setup of the drone’s ranging locations

reflected signals creates ranging error. In addition, the drone’s
GPS error contributes to the ranging error because the drone
estimates its distance to the target with respect to its GPS
position. These two sources of error should be statistically
independent and additive since they are unrelated. In this
experiment, we evaluate the total ranging error by positioning
a drone in 12 pre-determined locations from the target. The
drone then hovers at an altitude, holding its position based on
GPS measurements, and measures its distance to the target via
on-board FTM.

Setup: We configure the CompuLab IoT device as the FTM
responder and position it in an open field of the stadium on a
1.5m tall tripod to serve as a target. We then horizontally tape
measure and mark 12 ranging locations from the target from
5m to 60m in steps of 5m. We position the drone over each
of these marked locations and set it to hover at 10m altitude.
The drone then uses dual GNSS GPS receivers to hold its
position and range the target while hovering. Fig. 7 shows

Fig. 7: On-drone target-to-drone ranging estimates

the mean and 2 standard deviations of the drone’s FTM range
estimation. The results indicate that 95% of the time the rang-
ing error is around ±2m and the error is consistent for over
different distances. Two main features of the FTM-enabled
drone contribute to the consistent measurements with distance:
First, FTM operates based on the ToF. Unlike, for instance,
received signal strength, ToF increases linearly with distance
which, in principle, allows ranging error to be independent
of distance. Second, the drone measures an air-to-ground
channel. Contrary to terrestrial ground-to-ground channels, air-
to-ground channels have dominant LoS and limited multi-
path fading. It enables most of the signals to travel directly
towards the target and produce consistent ToF measurements.
In addition, we observed in the experiments that the dual-
GPS accuracy is approximately ±1m. Clear view of the sky

(a) (b) (c)

Fig. 8: Trajectories of two drones (cyan and orange) with λ
value configured to (a) 0.5, (b) 2, and (c) 14

and dual GPS receivers enable the drone to observe sufficient
satellite signals to position itself in space. Moreover, the on-
board gyroscope and low-level flight control logic enable the
drone to stabilize at that position.

Finding: By exploiting the dominant LoS property of air-
to-ground channels and the linear relationship between FTM
signals and range estimates, an FTM-enabled drone can esti-
mate distance toward the target with ±2m error for different
ranges.

B. How Much to Spread Out (λ)?

FALCON enables drones to balance their desired diversity
of observation with dynamics of approaching via the parameter
λ. Lower values of λ contribute to a more angular spread,
whereas increasing it allows for more direct movement to
the target. We experimentally characterize angular spread and
travel distance via a simplified two-drone scenario. For that,
we consider drones with a known target location to remove
the impact of measurement error, and perform missions with
different λ. In this way, we isolate the trade-off between
angular spread and travel distance.

Evaluation Parameter Value
Drone speed (v) 1m/s
Drone altitude 10m

Search space resolution 1m
Reposition update frequency (f ) 0.25Hz

Collision threshold (cth) 8m
Approaching threshold (ath) 10m

TABLE I: List of important evaluation parameters

Setup: In the experiment, we position drones in the Rice
stadium in the region marked “START” as shown in Fig. 8.
We position the target in the lower center of the stadium,
marked with a red pin, to provide sufficient area for drones
to spread out. Drones fly at 10m altitude and 1m/s speed,
updating their reposition decision every 4s as listed in Table
I . To avoid a collision, drones keep cth distance between each
other. At each reposition instances, drones log angular spread
and travel distance. The mission proceeds until all drones
approach the target, reaching ath. In the experiment, we vary
λ, with the smallest value being 0.5 due to the limited search
area available for spreading as shown in Fig. 8(a). We increase
λ to 20 in steps of 2.
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In the evaluation, as a baseline, we consider a flocking
strategy that navigates drones directly towards the target as
a flock, focusing on minimal travel distance. To compare
FALCON with an extreme spreading case, we also consider
a 2-Phase strategy that directs drones to maximally spread
out first and then approach the target at the cost of the extra
travel distance. Because neither flocking strategy nor 2-Phase
strategy is dependent on λ, we report their results over all
values of λ.

(a) Angular spread as a function of λ

(b) Angular spread gain as a function of λ

Fig. 9: Average angular spread and average angular gain
relative to the baseline flocking scheme

Angular Spread: Fig. 9(a) depicts the drones’ average
angular spread throughout a mission vs. λ. The flocking
strategy obtains approximately 26◦ average angular spread by
directly navigating drones to the target in a flocking formation.
In contrast, the 2-Phase strategy attains 2.7× more average
angular spread than the flocking strategy by first traveling with
greater angular spread and then approaching the target at a 90◦

angle. Unlike both of these schemes, FALCON allows drones
to choose angular spread by adjusting λ.

As shown in Fig. 9(a), the standard deviation of the average
angular spread increases with increasing λ. This is due to GPS
error that has increased impact on the deviation of the angular
spread when drones fly close to each other, whereas this impact
is minor when drones fly in a spread-out fashion. Thus, larger
values of λ are more sensitive to GPS error. Moreover, there
is a step effect when λ ≥ 10. This arises due to the joint effect
of discretization of the search space and the fact that at larger
values of λ, drones tend to reposition over similar waypoints
that lie in the direction of the straight path to the target.

Fig. 9(b) shows the average angular spread gain of FALCON
in with respect to the flocking scheme vs. λ. The figure
suggests that FALCON enables 2.2× average angular spread
gain with λ set to 2 and even more when λ < 2. However,

as λ increases, the diversity of observations decreases rapidly
and the approaching feature dominates the flight decision. For
instance, less than 1.5× gain can be attained when λ is 8.
Also, as λ ≥ 14, drones fly with minimal spreading, reaching
diminishing returns on average angular spread gains.

(a) Travel distance as a function of λ

(b) Additional travel distance as a function of λ

Fig. 10: Average travel distance per drone and additional
average travel distance relative to the flocking scheme

Travel Distance: Since λ trades angular spread for travel
distance, we now explore travel distance: Fig. 10(a) depicts
average distance traveled per drone throughout a mission as
a function of λ. First, notice that drones travel only 50m by
following the flocking scheme and moving straight towards the
target. The 2-Phase strategy, on the other hand, requires drones
to fly approximately twice that distance to complete both
spreading and approaching phases. In FALCON, the travel
distance can be adjusted based on the λ value, which in turn
can be chosen, for instance, based on the quality of the sensory
data or remaining energy level in a mission.

Fig. 10(b) shows the additional average travel distance of
FALCON relative to the flocking scheme. The results indicate
that with λ set to 2, the extra distance is less than 30%
while average angular spread gain is more than 2× compared
to the flocking scheme. The figure also suggests that as λ
increases, the additional distance decreases and becomes even
negligible for λ ≥ 14 due to a rapidly diminishing observation.
In that case, the approaching feature dominates the flight
decision, allowing for less travel distance. In the experiment,
the maximum extra travel distance is approximately 60%
which corresponding to λ = 0.5. It also enables more than
2.5× angular spread gain as shown in Fig. 9(b).

Finding: i) With two drones and λ = 2, FALCON can realize
2 .2× average angular spread gain at the expense of 27%
additional average travel distance compared to the baseline
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flocking scheme. ii) As λ increases beyond 6, the approaching
feature of FALCON reduces the extra travel distance to less
than 10%. iii) Drones heavily focus on approaching when
λ ≥ 14 , mimicking the flocking strategy in the flight decision.
iv) The diversity of observation feature of FALCON enables
average angular spread gains up to 2 .6× compared to the
flocking strategy.

C. Target Localization

Thus far, we have studied FALCON in the context of
a known target. Here, drones must also localize the target
such that spreading out can now impact localization accuracy
alongside sensor measurement errors from FTM and GPS.

Setup: We randomly position drones in the upper region of
the stadium and provide 5m -10m separation between drones
to imitate a nearly co-located starting location. Similar to
Section IV-B, we place the target in the lower center of the
stadium. We set λ to 2 and configure the remaining parameters
of the experiment based on Table I . In a mission, each drone
periodically computes its next waypoint to reposition. For
that, the drones first self-position via GPS and perform on-
drone target-to-drone ranging estimation via FTM. Then, they
share their individual GPS positions and range estimates, and
subsequently perform target estimation. Finally, depending on
the specified flight planning strategy, the drones compute their
next reposition waypoints. A mission is considered completed
when the target estimation converges and drones are within
distance ath of the target.

In addition to the baseline flocking scheme, we consider
a Random-Fast strategy and a Diverse-Start strategy in the
experiment. The Random-Fast strategy assumes infinitely fast
drones that fly to random waypoints in the stadium. For
comparison, we set the number of waypoints visited by
the Random-Fast strategy equal to the average number of
waypoints for FALCON. Despite the infeasibility of infinitely
fast drones, this method provides a reference for achievable
localization accuracy when the target is viewed from uniformly
random locations in the field. The Diverse-Start strategy, on the
other hand, considers drones that start a mission from diverse
positions, from different corners of the stadium, and otherwise
follow FALCON’s flight planning strategy. This benchmark
reveals the impact of initial diverse observation on localization
time. As discussed in Section II-C, diversity of observation
is a key factor for accurate target localization. We quantify
this factor via Fisher Information (FI) following Eq. (5) and
normalize it over the maximum achievable information with
two drones [6].

Information Gain: Fig. 11(a) shows normalized FI with a
95% confidence interval vs. time. It indicates that FALCON
and the flocking scheme have similar low information due
to the initial nearly co-located position of drones. However,
it also suggests that FALCON gains information at a much
higher rate compared to the flocking strategy as a mission
progresses. For instance, in the first 20 sec of a mission
FALCON attains 10× more information compared to the
flocking scheme. This is because of the diverse observation
feature which allows FALCON drones to spread out as soon

(a) Normalized FI vs. time

(b) Localization error vs. time

Fig. 11: Two networked drones localizing and approaching a
target in a mission

as a mission begins. While spreading from their initial posi-
tions, drones view the target from increasingly diverse spatial
positions. This, in turn, enables FALCON to acquire target
location information at a much faster rate compared to the
flocking scheme whereas drones in the flocking scheme stay
close to each other as a flock throughout a mission and observe
the target from a similar location.

The figure also suggests that FALCON attains more than
90% of achievable information in just 40 sec and maintains
it throughout a mission, with slight variation in the informa-
tion corresponding to continuous estimation and repositioning
processes. Unlike FALCON, the flocking scheme is only
able to gradually increase its information in the first 40 sec,
achieving less than 20% of information. Initially, drones in the
flocking scheme are both far away from the target and flying
at close proximity; they severely lack diverse observations
and therefore experience an extreme scarcity of information.
Hence, they inaccurately localize the target and spend some
time flying mostly in the wrong direction. As they eventually
come closer to the target later in a mission, the angular spread
quickly increases because of reduced distance to the target.
This raises the average FI from 0.2 to 0.65 during 40 − 60
sec. However, lack of diverse observation in the process of
approaching the target results in inconsistency of acquired
information. It is demonstrated as FI standard deviation of
±0.1 in Fig. 11(a). FALCON, in contrast, consistently acquires
almost all information about the target location in a short
period and retains it as a mission progresses.

The Random-Fast strategy instantaneously achieves several



10

orders magnitude more information compared to FALCON or
the flocking scheme. While infinitely fast speed allows drones
to sample many locations at once, the randomness property
of the strategy provides drones with a different view of the
target. Hence, the Random-Fast strategy instantly obtains 89×
more FI compared to the maximum achievable information
with FALCON.

Localization Accuracy: We now explore how the infor-
mation gain impacts localization accuracy: Fig. 11(b) shows
localization error with a 95% confidence interval vs. time.
First, both FALCON and the flocking strategy initially localize
the target with a high mean error of 11m and a standard
deviation of ±2m because a mission just has started and the
drones, that are nearly co-located, extremely lack information.
Then, similar to the gradual and inconsistent information
gain, the flocking scheme only gradually improves localization
accuracy, with average error converging to 3m and standard
deviation always fluctuating in the scale of ±1m. In contrast,
through consistent and rapid information gain, FALCON dras-
tically improves the accuracy as drones reposition in a mission.
In a short period, it localizes the target 2× more accurately
compared to the flocking strategy and reduces the standard
deviation of the error to a negligible value. Notice that FI does
not necessarily map one-to-one to accuracy due to the target
estimation process involving in the mission cycle. However,
it demonstrates the impact of information gain on target
localization accuracy over time and provides the reasoning
behind the performance advantages of FALCON.

Unlike FALCON or the flocking strategy, the Random-Fast
strategy instantly achieves localization accuracy of approxi-
mately 0.8m via hypothetical infinitely fast drones that can
sample randomly in the search space and collect an abundance
of information. It serves as a lower bound on localization
accuracy in this experiment, and FALCON is much closer to
that bound than the flocking scheme.

Note that the obtained results are based on an idealized ex-
perimental scenario as more complex experimental conditions
will result in higher FTM ranging errors, and therefore require
more drones to achieve accurate localization.

Fig. 12: Localization convergence time vs. flight planning
strategy with two networked drones

Localization Time: For the different methods, Fig. 12
depicts localization convergence time whereas Fig. 13 shows
normalized FI when a mission starts and when the target
localization converges. First, observe that the Diverse-Start
strategy is the fastest to localize a target, on average requiring
less than 30 sec. This is attributed to the fact that drones in the

Fig. 13: Target location information vs. flight planning strategy
with two networked drones

Diverse-Start strategy are already spread out in the beginning
of a mission (viewing the target from different corners of the
stadium) and already have approximately one-third of the total
information when a mission just begins as indicated in Fig. 13;
only the remaining information needs to be acquired during
a mission to quickly localize a target. However, drones in
FALCON and the flocking scheme start a mission from nearly
co-located positions and their initial information is in the scale
of one-fiftieth. To localize a target, the flocking scheme on
average requires approximately 1 min, navigating drones to
move as a flock. FALCON, in contrast, needs 30% less time
compared to the flocking scheme to localize a target by jointly
spreading and approaching a target in a mission.

Finding: i) Exploiting diverse observation as soon as the
mission begins, FALCON gains information about the target at
a much higher rate compared to the flocking scheme, achieving
more than 90% of FI in a short period. ii) FALCON also
maintains the acquired information by continually observing
the target from the diverse position over time. iii) Flying close
to each other like a flock, drones in the flocking are slow and
inconsistent in regards to information gain, FI fluctuating in
the range of 0 .55 − 0 .75

Finding: ii) Consistent and rapid information gain pattern
enables FALCON localize the target both 2× more accurately
and in 30% less time compared to the flocking scheme.
v) The initial diverse position of the Diverse-Start strategy
provides the drones with significant starting information so
that it outperforms FALCON and the flocking schemes in
terms of localization time. vi) Instantly attaining several orders
of magnitude, the Random-Fast strategy localizes a target
with sub-meter level accuracy, serving as a lower bound on
achievable accuracy in this experiment.

D. Increasing Number of Drones
To yield a unique solution, multi-lateration requires at least

three observation points for 2D and four for 3D. Thus far,
we have examined FALCON with two drones, seemingly
under-constrained for 3D multi-lateration. However, FALCON
exploits the mobility of drones to realize multiple spatial
observation points with each drone. Consequently, localization
and tracking are even possible with a single drone. While
increasing the number of drones is advantageous for local-
ization accuracy and localization time, it also increases the
total system cost and energy usage. Moreover, avoiding colli-
sions among drones becomes more pressing and increasingly
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impacts their flight dynamics. In this experiment, we explore
how FALCON realizes localization and tracking with a single
drone, and, as the number of drones increases, we analyze
the impact of collision avoidance on the flight pattern. We
also study the contribution of additional drones to localization
accuracy and localization time.

The setup of this experiment is similar to the one in Section
IV-C except for the varying number of drones in the network.

(a) (b) (c)

Fig. 14: Trajectory of FALCON with (a) one, (b) two and (c)
three drones in a mission.

Single Drone: Following the proposed flight strategy in Eq.
(6a - 6g), the drone in this scenario plans its next reposition
waypoint with respect to the previous location Sk,t−1. Fig.
14(a) demonstrates the trajectory of the drone denoted as D1.
Notice that the drone navigates in a non-direct, curved pattern
before encircling the target. This is because the drone aims to
increase FI over time by exploiting lateral observations and
obtaining different spatial views of the target. For a single
drone, straight-line flight would miss that opportunity and
provide only a single-sided view of the target with very limited
observability, ultimately degrading localization accuracy.

Once ath distance from the localized target, the drone
encircles the target in order to maintain (and if possible,
even further improve) observation diversity. This also aligns
with prior work [23] in which a drone circles over the target
for optimal target localization. Moreover, the FALCON drone
also has the flexibility to modify the radius of the circle
via simply adjusting approach threshold ath, with larger ath
corresponding to expanded circle. This feature might be of
particular use in accommodating different mission scenarios,
for instance, dynamically adjusting the radius of the circle to
track a mobile target.

Multiple Drones: Unlike the single drone scenario, some
missions require multiple drones, for example, to share the
workload or decrease localization time. Then, as the number
of drones increases, the issue of collision among drones arises.
To prevent it, drones maintain collision avoidance distance cth
between each other. With two drones in a mission, as shown in
Fig. 14(b), the risk of collision is typically low since λ enables
sufficient spreading of drones D1 and D2 to two different sides
of the stadium to avoid collision (unless λ is sufficiently high
that the approaching component of the strategy prevails, in
which case the drones move directly to the estimated target
keeping cth between each other).

Fig. 15: Localization accuracy as the number of drones in-
crease in the network

When there are more drones in a mission, for instance, three
as shown in Fig. 14(c), the two outermost drones, D1 and D2,
approach the target in a spread out pattern while D3 navigates
between those drones. An interesting behavior occurs when
there is no collision avoidance or if cth is extremely small.
Then, D3 tend to fly close to the outermost drones, even
following their flight pattern. This is due to the two-pair effect
that results from expressing angular spread between drones
via the two-pair angular combination. However, adjusted ap-
propriately, for instance cth = 8m in Fig. 14(c), collision
avoidance itself creates a form of diversity that enables all
drones in FALCON to navigate towards the target from a
diverse perspective.

Localization Accuracy: Fig. 15 shows localization error
as the number drones increase for FALCON and the baseline
flocking strategy. First, notice that FALCON outperforms the
flocking strategy for any number of drones. However, the
flocking strategy improves its localization accuracy at a much
higher rate as more drones join a mission. For example,
compared to a single drone mission, the localization error
drops to 53% with three drones, and even to 67% with four.
The reason this is that adding extra drones increases the
ratio of drones per search area and higher overall observation
is achieved. To understand the scale, consider four drones
positioned ten meters apart from each other ready to start a
mission. Then, the drones already cover more than 70% of
the search space’s width. As they progress in a mission, they
potentially create virtual sensors all over the search area, which
results in significant improvement of localization accuracy. In
contrast, FALCON relies on informative flight decisions to
achieve high localization accuracy, even with several drones in
a mission. A single drone following FALCON’s flight strategy
(exploiting diverse observation) can attain the accuracy of
2.3m whereas two drones achieve similar localization accuracy
results to that of four drones in the flocking scheme. Being
able to acquire most of the informative measurements with a
limited number of drones, FALCON can achieve high accuracy
with several drones, and the improvement beyond two drones
is incremental, at least in this relatively small search area.

Localization Time: Fig. 16 presents converged localization
time that FALCON and the flocking strategy incur for a
different number of drones. Similar to the localization accu-
racy analysis, having more drones in a mission significantly
helps the flocking scheme to more quickly localize the target
due to extra observations that each drone contributes to a
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Fig. 16: Localization time as the number of drones increase
in the network

mission. In particular, compared to a single drone, two drones
can decrease localization time by 37% whereas three drones
improve localization by more than half. Also, notice that
FALCON sharply decreases localization time when two drones
are involved in a mission in contrast to one drone. This is
because the additional drone navigates to exploit the second
half part of the view (right-hand side of the stadium in Fig.
14(b)) of the target position, which is critical for boosting the
information gain. Overall, FALCON is effective in quickly
acquiring target location information, and always outperforms
the flocking scheme as shown in Fig. 16.

Finding: i) FALCON exploits mobility of drones and diverse
measurements observed throughput in a mission to accurately
(2 .3m) localize and track a target even with a single drone.
ii) As the number of drones increases in FALCON, collision
avoidance serves as a supplementary form of diversity to
distribute the spread among all drones in a mission. iii) The
flocking scheme relies on the number of drones to improve
localization accuracy and localization time while FALCON
exploits informative locations to achieve similar and even
better results with fewer drones.

E. Mobile Target

The FALCON system can be used to localize and approach
not only static but also mobile targets. In this experiment,
we consider two cooperative drones that are instructed to
localize and approach a moving target. For that, we employ
the combination of both experimental missions and emulation-
based missions with the experimental dataset. We vary the
speed of the targets from 0.5 m/s to 3.0 m/s, essentially
capturing the different dynamics of movements starting from
walking speed to running speed. The target begins from the
center of the stadium and moves linearly to its other end, in
the opposite direction from the region marked “START”. In
this experiment, we explore the impact of the target mobility
on the localization accuracy considering FALCON as well as
the baseline flocking scheme.

In Fig. 17 we show the localization error of the baseline
flocking scheme and the FALCON strategy for different target
speeds reaching up to 3 m/s. The λ parameter of the proposed
drone flight strategy is configured to a value of 0.5 throughout
this experiment. Observe that, due to the lack of spreading
and the insufficiency of observation diversity, drones in the
flocking scheme experience difficulty localizing the moving

Fig. 17: Impact of target mobility on FALCON’s localization
error

target. In particular, as the speed of the target reaches 1
m/s (i.e. exceeding the speed of the drones) the error almost
doubles. Moreover, the fluctuations in the standard deviations
become large and deviate between large intervals reaching up
to 5m due to similar limited observation reasoning. In contrast,
FALCON always achieves a much smaller localization error
compared to the flocking scheme even when the speed of the
target exceeds the speed of the drones. In fact, the diversity
of observations in FALCON allows drones to gain a sufficient
amount of information to be able to keep the mean as well as
the standard deviation of the error low (below 10m even for
the target’s highest speed).

Finding: The diversity of observation component of
FALCON enables drones to accurately localize both static as
well as mobile targets even when the targets move faster than
the drones.

F. Computational Complexity

In FALCON, we develop a distributed and computationally
light-weight flight planning strategy that provides real-time
flight decisions on resource-constrained drone platforms. For
that, each drone k takes into account its speed v, reposition
update frequency f and search space grid resolution r to
construct a set of W candidate reposition waypoints that are
physically reachable until the next reposition instance. Next,
it considers each of the waypoints in the set and the current
location of the N − 1 neighboring drones in the network to
perform W × (N − 1) angular spread and distance to target
computation. Then, it selects the best waypoint from that set
that maximizes the angular spread of the networked drones
relative to the estimated target and minimizes the distance
towards it.

Notice that, to make a flight decision, each drone considers
only its own set of W candidate reposition waypoints and
a single waypoint location of neighboring drones, avoiding
exponential dependence of the strategy on the number of
drones. While increasing drone velocity, update frequency,
search area, or spatial resolution also increases W , such
increases have a linear impact on the overall complexity of
the strategy. Given the search area of 50m × 100m and the
grid resolution of 1m, in the experiments, it takes just few
milliseconds for two drones flying at 1m/s with f = 0.25Hz
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to compute their next best reposition waypoints on our UP-
Board companion computer.

Finding: FALCON’s computation complexity increases only
linearly with the number of drones. In the experiments, the
drones need only few milliseconds to compute the next repo-
sition waypoints.

V. RELATED WORK

Flocking Approach: Cooperative behavior of animals has
inspired numerous navigation strategies, e.g., [5], [24]–[26].
One of the most well-known and well-understood flocking
approaches, [5], was motivated by flocking behaviors of birds;
this approach has been employed by many multi-robot systems
for target tracking, e.g., [27]–[29]. In such work, robots follow
three simple rules for repositioning: cohesion rule to stay
close to nearby robots, separation rule to avoid a collision
between robots, and alignment rule to match velocity and
heading of robots. The flocking approach also adheres to
leader-follower hierarchy [30], [31]; a more experienced bird
(or more advanced robot) takes the lead while other members
join as followers. Unlike the flocking approach, FALCON
navigates drones to simultaneously to localize, approach, and
track a target by jointly optimizing for diverse of observation
and dynamic approaching. While the leader-follower hierarchy
and simple rules of the flocking approach can potentially
enable better scaling to swarms of 100’s, FALCON allows
for more advanced on-board processing with drones of equal
standing.

Fine Time Measurement (FTM): Existing implementa-
tions of the protocol mainly focus on self-positioning the
client in an indoor environment, e.g., self-localizing a person
with a smartphone inside a building [12]. For that, the client
usually performs multilateration in an environment that has
multiple distributed APs deployed. Recently, [32] proposed
to complement existing GPS and odometry systems by jointly
fusing Wi-Fi FTM, GPS, and odometry information in vehicle
self-positioning. It has shown to achieve lane-level positioning
accuracy in urban canyons. Unlike any prior work, FALCON
is the first system to realize on-drone target-to-drone range
sensing mechanism via FTM and to propose a flight planning
strategy to autonomously navigate a network of drones via
FTM range measurements to localize targets.

Recently, the usage of Wi-Fi FTM has been increasing in
different applications as many works adapt it in their design
[33]–[40]. For instance, [33] integrates FTM for mmWave
network beam search strategy and adapts it for handover pro-
cedure while Google provides an example application [34] for
Wi-Fi Aware services. Moreover, recent work has investigated
the security features of the protocol [41], [42]. In particular,
[41] analyzes security guarantees of the protocol across the
logical and physical layer meanwhile [42] employs FTM as
a metric to discriminate a neighbor from an attacker in IoT
devices. To further improve the achievable accuracy of the
FTM measurements, machine learning approaches have also
been proposed in the prior work [43]–[45].

Experimental Multi-Drone Systems: While there are many
algorithmic prior works, relatively few design a multi-drone

system and perform field experiments, e.g., [4], [46]–[49].
Moreover, most existing systems are designed with different
goals than FALCON. For instance, [48] proposes a multi-
quadrotor framework that navigates quadrotors to defend an
object from an attacker. Similarly, [47] presents a multi-
drone system and a communication scheme for scanning the
maritime area and transmitting telemetry images and data.
Recently, [49] proposed a software-defined control frame-
work and presented a prototype of fully reconfigurable drone
network. The most relevant work to FALCON [46] aims
to localize VHF radio collared animals via multiple drones
equipped with yagi antennas, capturing bearing information
about the target. For that, drones divide the search space into
disks of equal radius and travel to pre-defined sample locations
that are based on vertices of an equilateral triangle inscribed
in the disk. In contrast to [46], FALCON takes advantage
of ubiquitous Wi-Fi for ranging a target and dynamically
navigates drones in a mission. Leveraging the infrastructure
of [4], FALCON integrates Wi-Fi FTM feature on a multi-
drone platform, implements a novel flight planning strategy,
and proposes an end-to-end system to approach, localize, and
track RF targets.

VI. DISCUSSION

In this paper, we demonstrate the principles of FALCON,
presenting its design, implementation, and experimental eval-
uation. Yet, there are opportunities for extending the system,
and in this section, we discuss potential future research direc-
tions.

In addition to a single target scenario, FALCON can be ex-
tended to missions with multiple targets. For that, the proposed
target-to-drone range sensing mechanism can be modified to
associate different targets based on their unique MAC address
accessible via FTM. The challenge is to dynamically reposition
N drones to service M targets. The flight strategy could
be adapted in divide-and-conquer fashion, assigning different
drones to different targets, or it could also be formulated as a
joint optimization problem, exploiting cumulative informative
locations in a mission. Then, there are potential issues of
unreachable targets due to N < M and communication among
networked drones and multiple targets, thereby generating new
research questions.

For ease of demonstrating the key contributions, we pre-
sented FALCON in the context of 2D, and also evaluated with
drones flying at a fixed altitude. The flight planning strategy
can be extended to incorporate an additional dimension, for-
mulating Eq. (4) as a 3 × 3 matrix and adjusting Eq. (6a-
6h) to accommodate 3D navigation. This will provide the
networked drones an additional degree of freedom to exploit
diverse observations and spread out in 3D. On the other hand,
as drones decrease their altitude and fly closer to the ground,
a multipath effect from the ground will have an impact on the
sensing measurements as signals reach the receiver antenna
in multiple paths. Thus, there will be trade-offs between the
additional spreading gain due to the elevation and potential
sensory measurement degradation due to multipath. Also,
modifying the flight planning for 3D navigation will increase
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the number of reposition candidate waypoints W at each
epoch; however, it will still have a linear impact on the
computational complexity of the system.

Moreover, we remark that, in complex environments such
as urban areas that have many obstacles (tall building) and
limited/degraded GPS coverage, drones might need to build
a map of the environment to be able to accurately self-
position and perform a mission in that environment. In such
cases, FALCON can be implemented along with Simultaneous
Localization and Mapping (SLAM) methods in robotics [50].
In that case, SLAM can focus on building the map of the
environment and self-positioning the drones while FALCON
can focus on the mission objective, with the two systems
complementing each other.

Lastly, note that Falcon assumes that the target drones have
Wi-Fi communication, and a result its usage may be limited
to certain types of drones (such as entertaining small-sized
or medium-sized drones as opposed to some industrial drones
that may fly out of the Wi-Fi range).

VII. CONCLUSION

In this paper, we propose FALCON, an end-to-end system
to autonomously approach, localize, and track RF targets via
drone networks. We realize the first range sensing drones
that leverage Wi-Fi’s recent FTM technology to dynamically
range targets. Moreover, we propose a novel flight planning
strategy that enables drones to simultaneously localize and
approach the targets by jointly optimizing the drones’ di-
versity of observation and the dynamics of approaching. We
implement FALCON on a multi-drone platform and perform
an extensive set of missions for experimental evaluation. We
show that, compared to a baseline bio-inspired scheme, FAL-
CON achieves up to twice localization accuracy and requires
30% less flight time. The performance improvements can be
realized by deploying fewer drones, having faster missions,
achieving higher localization accuracy, or any combination of
these features.
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and Pubudu N Pathirana. Optimality analysis of sensor-target localiza-
tion geometries. Automatica, 46(3):479–492, 2010.

[14] Kenneth D Sebesta and Nicolas Boizot. A real-time adaptive high-
gain ekf, applied to a quadcopter inertial navigation system. IEEE
Transactions on Industrial Electronics, 61(1):495–503, 2013.

[15] Alessandro Benini, Adriano Mancini, and Sauro Longhi. An
imu/uwb/vision-based extended kalman filter for mini-uav localization
in indoor environment using 802.15. 4a wireless sensor network. Journal
of Intelligent & Robotic Systems, 70(1-4):461–476, 2013.

[16] Weidong Wang, Hongbin Ma, Youqing Wang, and Mengyin Fu. Per-
formance analysis based on least squares and extended kalman filter
for localization of static target in wireless sensor networks. Ad Hoc
Networks, 25:1–15, 2015.

[17] K Stanton et al. Addition of p802. 11-mc fine timing measurement (ftm)
to p802. 1as-rev: Tradeoffs and proposals.

[18] Leor Banin, Uri Schatzberg, and Yuval Amizur. Wifi ftm and map
information fusion for accurate positioning. In IPIN, 2016.

[19] Wi-Fi Alliance. https://wi-fi.org/news-events/newsroom/
wi-fi-certified-locationbrings-wi-fi-indoor-positioning-capabilities,
2017.

[20] Riccardo Petrolo, Zhambyl Shaikhanov, Yingyan Lin, and Edward
Knightly. Astro: a system for off-grid networked drone sensing missions.
ACM Transactions on Internet of Things, 2(4):1–22, 2021.

[21] FAA. Federal aviation administration. https://www.faa.gov/, (Accessed
8 January 2022).

[22] Rice University. Rice university football stadium. https://riceowls.com/
facilities/rice-stadium/3/, (Accessed 8 January 2022).

[23] Sameera Ponda, Richard Kolacinski, and Emilio Frazzoli. Trajectory op-
timization for target localization using small unmanned aerial vehicles.
In AIAA guidance, navigation, and control conference, 2009.

[24] Iztok Fister Jr, Xin-She Yang, Iztok Fister, Janez Brest, and Dušan Fister.
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