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Abstract—This paper presents an evaluation of the perfor-
mance of Angle of Arrival (AoA) estimation algorithms in Un-
manned Aerial Vehicles (UAV) communication networks utilizing
massive Multiple-Input Multiple-Output (MIMO) base stations.
Five different AoA estimation algorithms were evaluated and
their performance was assessed. The results show the impact of
under-sampling on AoA estimation, specifically in the detection of
multi-path with higher normalized power. The effects of azimuth
AoA estimation via horizontal subarrays and the impact on
multi-path AoA estimates for hovering drones were examined.
The performance of the 2-D Bartlett spatial spectrum estimator
was evaluated, demonstrating higher accuracy for both azimuth
and elevation channels. This work provides important insights
for system designers when designing massive MIMO to drone
networks based on AoA estimation specifications.

Index Terms—Drone, Unmanned Aerial Vehicles, Angle of
Arrival, Localization, Massive MIMO.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have various applica-
tions, including telecommunications and medical supply deliv-
ery [1]. Main aspects of deploying UAVs in telecommunication
networks include three-dimensional deployment, performance
analysis, channel modeling, and energy efficiency [2]. Using
UAVs as relays can help overcome Non-Line-of-Sight (NLOS)
propagation path challenges and enhance the likelihood of
establishing Line-of-Sight (LOS) communication links, im-
proving ground users’ networks and providing cost-effective
and easily deployable wireless transmission schemes [3].

The wireless environment poses challenges that can impact
the accuracy of UAVs’ Global Positioning System (GPS), cel-
lular, and Wi-Fi localization, given its three dimensional mo-
bility [4]. Massive Multiple-Input Multiple-Output (MIMO),
with its ability to provide a large number of antennas for
spatial processing, is an emerging technology that can sig-
nificantly enhance network capacity and coverage for 5G and
beyond 5G networks [5], [6]. It offers itself as a promising
solution for UAV tracking. This paper analyzes the impact of
flight and hovering mobility on the estimation of drone’s Angle
of Arrival (AoA) and how massive MIMO can improve the
accuracy of such estimations, providing the first experimental
evaluation of the interaction between UAVs and massive
MIMO systems. By having the AoA for UAV applications
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allows for more adaptive communication strategies and en-
hanced remote sensing capabilities.

In prior work [7], five classical AoA estimation algorithms
were compared using MATLAB simulations on an eight-
antenna uniform linear array (ULA). Our study experimentally
evaluated these algorithms using an eight-antenna ULA and
UAVs in real-world scenarios, providing insights into their
practical limitations and advantages. Our findings showed
Root-Multiple Signal Classification (R-MUSIC) performed
best among the five algorithms for a hovering drone at various
locations, while Bartlett provided additional environmental
insights for angle estimation despite lower performance.

Fast-moving drones present challenges for accurate AoA
estimation due to factors such as UAV mobility, wind, and fast
time-varying multi-path. Our analysis of a hovering drone in a
time-invariant channel revealed that accurate AoA estimation
could be achieved with as few as 320 samples. This finding
sheds light on the interplay between sampling rate, drone
mobility, and the characteristics of the channel environment.

We studied the impact of antenna number and configurations
on AoA estimation in massive MIMO systems. Furthermore,
we analyzed the effect of using multiple rows and found
that mobility and dynamic environments significantly impact
AoA estimation accuracy. Additionally, we evaluated 2-D AoA
estimation and found it to outperform multi-row/column meth-
ods, making it a practical application for joint azimuth and
elevation estimation techniques in massive MIMO systems.

The remainder of this paper is organized as follows. Section
II explains the theoretical methods employed in the study,
while Section III provides details about the experimental
platform. Section IV includes the experimental details, results
and analysis. The paper is concluded in Section V.

II. SYSTEM MODEL AND METHODS

Multiple antennas are commonly used in AoA estimation
to overcome challenges and improve accuracy. Factors such
as antenna spacing, frequency, and the environment play
crucial roles in determining the effectiveness of using mul-
tiple antennas. By carefully analyzing these factors, we can
gain insights into optimizing AoA estimation techniques for
improved performance.

We consider the system model from [7]. Assume a ULA
with M antennas and equal antenna spacing of d. Let xm(n)
denote the signal received by the mth antenna at the nth
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sample index and si(n) denote the input signal from the ith

source, where i = 1, . . . , D. The input output relation can be
specified as:

xm(n) =

D∑
i=1

si(n)e
−jβd(m−1) sin θi + wm(n) (1)

where θi is the AoA of the ith signal, β = 2π/λ where λ
denotes the wavelength, and wm(n) denotes the additive noise
term at the mth antenna. The signal source vector can be
denoted as s(n) = [s1(n), s2(n), . . . , sD(n)]T ∈ CD×1 and
the received vector as x(n) = [x1(n), x2(n), . . . , xM (n)]T ∈
CM×1. Subsequently, (1) can be written in vector form as:

x(n) = A(θθθ)s(n) + w(n) (2)

where θθθ = [θ1, . . . , θD]T and A(θθθ) ∈ CM×D is the array
steering matrix defined as:

A(θθθ) =


1 1 · · · 1

e−jβd sin θ1 e−jβd sin θ2
... e−jβd sin θD

...
...

. . .
...

e−jβd(M−1) sin θ1 e−jβd(M−1) sin θ2 · · · e−jβd(M−1) sin θD

 (3)

and w(n) = [w1(n), w2(n), . . . , wM (n)]T ∈ CM×1 is the
noise vector.

The objective of AoA estimation algorithms is to find
the incident angles of arrival denoted by θi. For this, auto-
correlation matrices of the received signals are required which
are mostly not known in real-time measurements, and instead,
are estimated from a finite number of data samples known as
snapshots. Let K denote the number of snapshots, then an
estimate of the auto-correlation matrix is computed as:

R̂xx =
1

K

K∑
n=1

x(n)xH(n) (4)

where xH represents the Hermitian transpose of x. Sev-
eral algorithms exist to estimate θθθ from the estimated auto-
correlation. For instance, in Bartlett method, the output power
or spatial spectrum as a function of θi is computed as:

P (θi) = aH(θi)R̂xxa(θi) (5)

where a(θi) denotes the i-th column of the array steering
matrix defined as:

a(θi) = [1, e−jβd sin θi , ..., e−jβd(M−1) sin θi ]T . (6)

By identifying the largest peaks of P (θi), we can accurately
determine the AoA. A detailed theoretical description of
several other approaches can be found in [8].

III. EXPERIMENTAL PLATFORM

This study integrates the Autonomous, Sensing, and Teth-
erless Networked Drones (ASTRO) platform [9] with the RE-
NEW and Sounder software. The Reconfigurable Ecosystem
for Next-Generation End-to-End Wireless (RENEW) testbed
[10], developed at Rice University, is utilized, with the

Sounder framework enabling clients to send pilots and data to
the base station and record received signals from all antennas.
Transmit pilots are sent with Time Division Duplexing (TDD),
and each client uses uplink signals on subframes, with a 3.6
GHz center frequency, a 5 MHz bandwidth and a sample rate
of 5 MHz.

The TDD schedule is decomposed into frames, slots, pilots,
and samples as shown in Fig. 1. A total of 2000 frames were
collected during the experiment. Within each frame of 8.96
milli-seconds, there are 40 slots that include beacon, guard
band, and pilot signals. Beacons synchronize clients, guard
bands fill the buffer and provide spacing, and the pilots consist
of long-term training sequences (LTS) of 1,120 samples.
During the 17.92-second experiment, the base station collected
2,240,000 samples at each measurement location from signals
transmitted by a single drone. These samples corresponded to
the known pilot signals and were used to determine the AoA
of the impinging signals at each site.

Fig. 1: Data sets as represented in frames, slots, and samples.

The base station was positioned at a height of 34 meters
horizontal with the eight yard line. We measured at five
positions, as shown in Fig. 2, at angles of −9.64°, 10.20°,
21.54°, 32.49°, and 44.26°, to evenly cover the Rice University
football stadium. The drone hovered at each position for 17.92
seconds, providing a comprehensive view of the channel and
allowing us to assess the impact of each location on AoA
estimation performance.

Fig. 2: Setup for AoA experiment at Rice football stadium.

The following experiments were conducted using the setup
described above, detailed in Section IV:

• Evaluation of five different AoA estimation algorithms
for fixed antenna configuration and number of samples.
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• Analysis of the significance of sample count with fixed
antenna configuration on AoA estimation.

• Investigation of the impact of different antenna config-
urations on AoA estimation accuracy for fixed sample
count.

• Exploration of multi-row estimation with simultaneous
averaging of multiple rows.

• Comparison of the performance of 2-D AoA estimation
with multi-row and column estimation.

IV. EXPERIMENTAL DATA AND RESULTS

A. AoA Estimation Algorithms

We analyze the accuracy of five classical AoA estimation
algorithms for incoming signals from hovering drones. The
algorithms include Bartlett, Minimum Variance Distortionless
Response (MVDR), Multiple Signal Classification (MUSIC),
R-MUSIC and Estimation of Signal Parameter via Rotational
Invariance (ESPRIT) and their performance was assessed in
terms of AoA estimation accuracy and robustness to environ-
mental changes. This study provides valuable insights for se-
lecting the most appropriate algorithm for drone applications.

Setup: We conducted an outdoor drone experiment at Rice
Stadium, utilizing a transmitter client connected to a drone.
This drone facilitated up-link traffic communication with a
32-antenna massive MIMO base station, where 16 or more
antennas represent the massive aspect. The angles were defined
as zero degrees when measured at the front of the base station.
The drone’s locations were mapped using GPS positioning and
flown at a 20 m hovering altitude. To compare estimation
algorithm performance, we collected data as described in
Section III using only eight planar array elements with 3.94
cm spacing between them to gather a baseline for further
experiments. All 2,240,000 samples collected were used to
estimate the AoA at each location.

Results and Findings: Fig. 3 presents a comprehensive com-
parative analysis of five algorithms. This is depicted through
the use of box plots which for each set of AoA methods
displays the median, minimum score, lower quartile of 25%,
upper quartile of 75%, maximum score, and outliers.

Fig. 3a shows that the Bartlett algorithm produces a median
error of −4.69° inaccuracy, with estimation errors ranging
from −0.29° to −30.73°. ESPRIT has a range of error from
−8.56° to 16.77°, with a median error of −2.93°. MUSIC
ranging from 3.19° to −7.51°. R-MUSIC performed the best,
with the degree of inaccuracy ranging from 3.54° to −5.88°,
with a median of −1.63° offering the best performance. Fi-
nally, MVDR estimation errors ranged from 4.19° to −16.34°.

Further evaluation of the estimator’s angular spectrum was
conducted to elucidate the impact of the environment on each
estimator, as shown in Fig. 3b. For the azimuth angle of
−9.45°, Fig. 3b shows a comparison of the performance of the
five AoA estimation algorithms. The spectral plots for Bartlett,
MVDR, and MUSIC are represented by line curves, while the
dots represent the estimates for ESPRIT and R-MUSIC. This
plot gives an overview of how well each algorithm is able to
estimate the AoA values for the incoming signals.

After evaluating multiple AoA estimation algorithms, we
chose the Bartlett algorithm for further experimentation. The
Bartlett algorithm effectively incorporates a spectrum graph
and exhibits higher sensitivity to environmental factors and
combines spatial responses to estimate signal angles, providing
valuable insights. The spatial response determines signal di-
rection. This information helps detect multi-path or false peaks
that can affect angle estimation accuracy.

B. Sample Time

To accurately estimate AoA for mobile drones, we must
consider the drone’s mobility and physical factors, requiring
a significant number of samples to capture channel coherence
time. In this study, we determine the necessary number of
snapshots for estimating AoA in a time-varying channel by
examining the impact of channel coherence time and sampling
rate on accuracy. Our findings improve the localization sys-
tem’s overall performance and ensure reliable drone tracking.

Setup: We varied sample sizes from 5 to 5,120 to test the
impact on AoA estimation accuracy, using one row of eight
antennas in the massive MIMO base station.

Results and Findings: The experiment involved analyzing
the data from five different locations, with the estimation
results being represented by the error of each location relative
to its ground truth. The results of the AoA estimation are
plotted against the number of samples in Fig. 4a. The x-axis
scale varies exponentially. The results reveal that a higher
number of samples result in a smaller deviation of error around
the zero mean. In particular, we observed that the line of sight
path had the highest estimated peak, which resulted in a more
significant number of samples providing the best performance.
The shortest time while having the highest accuracy of the
estimate was every 64 milliseconds or 320 samples. Thus, a
sampling rate of 320 samples or 64 milliseconds will serve as
the baseline for monitoring a drone traveling at a maximum
speed of 20 m/s.

We observed a degradation in accuracy of ±17° after 320
samples, as demonstrated in Fig. 4a. We conducted further
investigations into the range of errors, as depicted in Fig.
4b and 4c, for the location of 32.47 degrees when using
the Bartlett algorithm. A comparison between Fig. 4b and 4c
reveals that the line of sight signal peaked with the greatest re-
sponse in both cases, while the multi-path signal grew stronger
as the number of samples decreased, leading to a conflict
in the signals. Additionally, the beamwidth increased and
more multi-path was observed in Fig. 4c due to the reduced
number of samples. Notably, Fig. 4d illustrates a significant
variation from the multi-path at higher sample rates, wherein
we observed the multi-path expanding and overlapping to
become the primary beam. We further verified the results over
multiple instances, which displayed comparable findings.

Our analysis showed that the 320-sample threshold rep-
resents the minimum data requirement before observing an
increase in estimation max/min range. Such a threshold can
vary depending on the channel coherence time and the number
of paths. Thus, undersampling results in the detection of the
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(a) (b)

Fig. 3: (a) Comparison of AoA methods using all measured locations. (b) Spatial spectral plots for a specific location.

(a) (b) (c) (d)

Fig. 4: (a) AoA Bartlett estimation vs the number of samples. (b) 320 samples spectrum graph of the AoA estimation. (c) 160
samples spectrum graph of the AoA estimation. (d) 5 samples spectrum graph of the AoA estimation.

multi-path with higher normalized power, thereby adversely
affecting the accuracy of the AoA estimate. While further
research is needed to understand the underlying mechanisms
and generalize the results to other scenarios, our findings
suggest that the 320-sample (corresponding to a sample every
64 milliseconds with a maximum speed of 20 m/s) threshold
is a reliable estimate of the minimum data requirement for
accurate AoA estimation in our experimental setup.

C. Azimuth Antenna ULA Sizing

The number of antennas and antenna spacing are param-
eters that influence beamwidth. While antenna spacing is
often pre-defined with the minimum length being half of the
wavelength in many deployments, massive MIMO systems
employ different antenna configurations. As the number of
array elements increases, the accuracy of direction-finding al-
gorithms is known to improve. In the azimuth plane, the Argos
V3 platform [11] supports up to eight antennas, while the
massive MIMO base station boasts five rows, enabling a more
comprehensive evaluation. In this section, we investigate the
effects of varying the number of antennas on AoA estimation
and assess the performance of antenna configurations.

Setup: This study evaluated the performance of two to
eight antenna contiguous combinations for estimating AoA
of a signal transmitted by a UAV using a 4 × 8 array. We
examine how the vertical array size affects the elevation AoA
estimate resolution and present results for different sizes and

combinations. The analysis was performed for each pair and
row from the base station.

Results and Findings: Our analysis of various linear array
antenna sizes for massive MIMO to drone communications
indicates that increasing the number of antennas improves
estimation accuracy. Fig. 5 depicts how the number of antennas
impacts the estimation accuracy. The estimate ranges from
−6.24° to 2.15° when eight antennas are used, with an
improvement in median accuracy of 3.91° for array sizes of
two to eight. The graph suggests that accuracy improves as
the number of antennas increases.

Fig. 5: AoA estimation vs Number of antennas.

The results presented in Fig. 6 show the impact of num-
bers of antennas on the beam pattern at a single location
corresponding to −9.64°, where also it can observed that the
estimation accuracy improved with an increase in the number
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of antennas. Among the different antenna configurations, the
eight antennas produced the best result, with an error of
only 0.74° from the ground truth. On the other hand, the
configuration with only two antennas showed a significant
deviation of 11.76° from the ground truth.

Fig. 6: Bartlett performance for varying number of antennas.

We also found that the effects of multipath on AoA esti-
mates for hovering drones become more pronounced as the
number of antennas decreases. Fig. 6 shows the impact of
decreasing the number of antennas on the effects of multipath,
specifically how the stadium environment affects the AoA
estimation. The lower part of the Rice football stadium has
cement bleachers on the left side and reflective metallic
bleachers on the right side. These reflections appear in the
signal when the drone is lifted to an altitude and transmits
an omnidirectional signal, resulting in a multi-path influenced
by the stadium objects. As shown in Fig 6, the graphs
demonstrate the effect of decreasing the number of antennas
and the influence of reflective objects on the accuracy of AoA
estimation. The results reveal that reducing the number of
antennas amplifies the impact of multipath, leading to less
accurate AoA estimation.

D. Multi 1-D Azimuth Estimation

AoA estimation relies on the computation of phase shifts
of the received antennas, which differ for different rows in
a massive MIMO system. This phase estimate improves as
the number of antennas increases in a ULA design. While a
ULA can be effective for certain applications, the increasing
use of multi-ULA and MIMO systems has led to Uniform
Rectangular Array (URA) systems outperforming ULAs [10].
The received signal phases differ across the five rows of
the URA array, with a vertical spacing 66.68 mm (1.25
wavelengths) between the rows. In addition to antenna spacing,
the mobility of the drones and variable channel conditions
affect the AoA calculation. In this section, we present the
results of evaluating each antenna row set for AoA estimation
and averaging the outcomes.

Setup: We used the full 5 × 8 massive MIMO URA with
varying inter-row phase differences.

Results and Findings: Fig. 7 shows the performance of
averaging the results from each row estimation. The x-axis
shows the number of rows used for estimation while the y-
axis shows the estimation error. To combine the results from

different row estimations, we use averaging. Each row is
individually used for AoA estimation using its corresponding
antennas, and the estimated angles from each row are then
averaged to obtain a final estimation.

The range of the estimator decreases as the number of rows
increases, with the minimum number of rows, (one row of
eight-antennas) having a range of −6° to 2°. The median
estimation error improves by 0.58° from one to five rows.
The maximum number of rows used is five, providing a 3°
range compared to an 8° range with one row due to variable
combinations in the AoA calculation. The design allows for
independent observations due to the significant separation of
6.66 cm between each row, which results in varying spatial
sums with multi-paths.

Fig. 7: AoA result for azimuth multi row estimation.

Thus, we observed that each row of the massive MIMO
test bed has rich multipath components that result in varying
spatial sums, which can lead to high deviation in the AoA
estimation. However, despite these fluctuations, we observed
a boost in the accuracy of AoA estimation when utilizing
massive MIMO estimates obtained from each row by aver-
aging the spectra to obtain a more robust estimate of the
AoA. By using multiple rows for their spatial components,
we can decrease the range of the estimations and achieve
better accuracy overall. Combining the spatial components
from multiple rows provides a more complete picture of the
signal, allowing for a more accurate estimation of the AoA.

E. Multi 1-D vs 2-D AoA methodology

With the expanding use of massive MIMO, joint azimuth
and elevation estimation methods are becoming more impor-
tant. As a result, attention has increased on the application
of 2-D AoA estimation, which involves a search for a two-
dimensional spectrum of the angles of arrival of incoming
signals [12]. In our experiment, we evaluate the performance
of 2-D estimation in comparison to multi-row and column es-
timation as discussed in Section IV-D for elevation estimation.

Setup: We used a similar algorithm as in Section IV-D to
estimate elevation angles from the same set of antennas. The
aim was to compare 2-D estimation to multi-row and multi-
column estimation and explore the best way to utilize 2-D
AoA from the five locations [13].

Results and Findings: Fig. 8a depicts the AoA estimation
accuracy for two different approaches: the 2-D Bartlett spatial
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(a) (b) (c) (d)

Fig. 8: (a) Comparison between 2-D AoA estimation and multi 1-D AoA estimation. (b) Full 2-D estimation spectrum plot.
(c) Azimuth 1-D spectrum plot. (d) Elevation 1-D spectrum plot.

spectrum estimate and the multi-row/azimuth 1-D spectrum
and multi-column/elevation 1-D spectrum estimation. The 2-
D Bartlett spatial spectrum estimate improves accuracy by
aggregating all antennas in the array to locate the spectrum
peak. In contrast, the 1-D method finds a peak from each row
or column individually, relying on a limited subset of array
elements for estimation. By aggregating all antennas, the 2-D
Bartlett approach captures subtle differences in angles more
effectively, leading to improved accuracy.

The spectrum graphs in Fig. 8b, 8c, and 8d provide a visual
comparison of the estimators’ peaks between the 2-D and
multi-row and column approaches. The 2-D Bartlett estimator
exhibits a narrower bandwidth on average, resulting in higher
precision and accuracy for azimuth and elevation angles.

Based on our study, the 2-D Bartlett spatial spectrum estima-
tor shows promise for joint azimuth and elevation estimation
in massive MIMO systems. It aggregates all antennas to
locate the spectrum peak, capturing subtle angle differences
missed by the 1-D method. This improves elevation estimation
accuracy significantly. The narrower bandwidth of the 2-
D estimator also enhances precision and accuracy for both
azimuth and elevation angles. These findings are important
for designing and optimizing high-precision spatial angle
estimation in massive MIMO systems.

V. CONCLUSION

We analyzed five AoA estimation methods for massive
MIMO in drone networks and found that R-MUSIC had the
best accuracy. However, we used the Bartlett algorithm for
further experiments due to its sensitivity to the environment.
We discovered that undersampling reduces accuracy, and more
than 320 samples reduce multi-path effects and lower esti-
mation errors. Increasing the number of azimuth antennas
enhances estimation results, with six to eight antennas offering
acceptable consistency. We also observed an improvement in
AoA estimation by utilizing massive MIMO and averaging row
estimation results. Additionally, 2-D Bartlett spatial spectrum
estimation shows potential for joint azimuth and elevation es-
timation. Our study highlights the importance of accurate AoA
estimation in optimizing performance and provides insights for
developing more efficient massive MIMO systems for drone
networks.
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