
Wide Area Redirection of Dynamic Content by
Internet Data Centers

S. Ranjan, R. Karrer and E. Knightly
Department of Electrical and Computer Engineering

Rice University
Houston, TX 77005, USA

Abstract— Traditional approaches to mirroring, caching, and
content distribution have an underlying assumption that minimiz-
ing network hop count minimizes client latency. However, with
uncongested backbones and potentially high-latency service times
for dynamic content, such techniques are of limited effectiveness.

In this paper we present an architecture in which dispatchers
at an overloaded Internet Data Center (IDC) redirect requests
for dynamic content to a geographically remote but less loaded
IDC. We show with both analytical modeling as well as testbed
experiments that the delay savings of redirecting requeststo
a lightly loaded IDC can far outweigh the overhead in inter-
IDC network latency. Consequently, client end-to-end delays are
significantly reduced without requiring modifications to clients,
servers, or DNS.

Index Terms— Internet Data Centers, Performance, Content
Distribution

I. I NTRODUCTION

Web content providers are increasingly off-loading the task
of content placement and distribution to Content Delivery
Networks (CDNs) such as Akamai, Digital Island, or Mirror
Image. The primary objective of CDNs, as well as of mirror-
ing and caching strategies, is to reduce the network latency
between the clients and the data they are accessing. This is
done in two ways: firstly, by directing clients to the closest
server [1], [2], [3], [4], [5], [6] and secondly, by placing the
most popularurls on replicas closer tohot-spots[7], [8].

However, two key trends challenge the premise that min-
imizing network latencies minimizes a client’s end-to-end
delay. First, because of over-provisioning in the Internetcore
[9], [10], delays across network backbones are increasingly
dominated by speed-of-light delays, with minimal router queu-
ing delays. Second, web content is increasingly dominated by
dynamiccontent that requires online processing of requests,
e.g., e-commerce sites. We will show and exploit the fact
that the processing times of dynamic content on moderately to
highly loaded servers can exceed network delays by an order
of magnitude.

In this paper, we introduce WARD (Wide AreaRedirection
of Dynamic content), a novel architecture for redirection of
dynamic content requests from an overloaded Internet Data
Center (IDC) to a remote replica. The key objective is to
reduce end-to-end client delays by determining at the IDC
whether the sum of networking and server processing delay is
minimized by servicing the request remotely (via redirection)

This research is supported by Hewlett Packard, NSF Grant ANI-
0085842, and by a Sloan Fellowship. The authors may be reached via
http://www.ece.rice.edu/networks.

or locally. In WARD, client requests are first routed to an
initial IDC via any mechanism available today (e.g., from
simple DNS round-robin to more sophisticated server selection
schemes, as described in [5]). Upon arrival at the initial
IDC, a request dispatcheruses a measurement-based delay-
minimization algorithm to determine whether to forward the
request to a remote or local server. Thus, unlike previous
approaches, WARD performs IDC-driven request redirection,
incorporates networking and server-processing delays to min-
imize total delay, and requires no changes to clients, DNS or
web servers.

Next, we develop a simple analytical model to characterize
the effects of wide area request redirection on end-to-end
delay. The model consists of a system of dispatchers, M/G/1
queues that represent servers, and inter-server delays that cap-
ture the cost of redirecting to a remote IDC. With this model,
we derive an expression for the optimal percentage of requests
that should be dispatched to a remote IDC replica under given
server and network characteristics. Moreover, we compute the
expected average request response time under this dispatching
policy. We then perform a systematic performance analysis to
study the impact of key performance parameters such as server
load, inter-IDC network latency, and measurement errors that
can be expected in realistic systems.

Finally, we implemented WARD and developed a testbed
consisting of (1) clients emulating an e-commerce workload
based on TPC-W benchmark, (2) wide area network links
emulated via Nistnet, (3) a web server tier, (4) a request
dispatcher that performs remote and local redirection via the
algorithms as described above, and (5) a database tier that
processes requests. The experiments show that the analytical
model provides a close match with experimental results for
server loads up to 70%. For higher loads, effects unique to
the implementation (e.g., database table conflicts) lead toa
deviation between model and testbed. Regardless, both the
model and implementation results indicate that WARD can
achieve significant reduction in end-to-end delay. For example,
for an e-commerce site with 300 concurrent clients, wide area
redirection reduces the mean response time by 54%, from 5
sec to 2.3 sec.

The remainder of this paper is organized as follows. In
Section II, we describe the system architecture of IDCs for
wide area request redirection. In Section III, we develop a
queuing model to study the architecture and in Section IV we
present numerical studies of the fraction of requests dispatched
remotely and the expected response times under various sce-
narios. Next, we describe our testbed implementation and

measurements in Section V. Finally, we discuss related work
in Section VI, and conclude in Section VII.

II. REDIRECTION ARCHITECTURE ANDALGORITHM

In this section, we present background on today’s IDCs,
describe WARD, and present a measurement-based redirection
algorithm.

A. IDC background

Figure 1 depicts the four-tier architecture prevalent in to-
day’s IDCs. To illustrate this architecture, consider the requests
of an e-commerce session. First, theaccess tierroutes re-
quests to the correct server cluster and performs basic firewall
functions such as intrusion detection. Second, upon arriving at
the web tier, load balancers may parse the request’s URL and
route it to a web server typically according to a load-balancing
policy (e.g., using round robin or more sophisticated policies
as in reference [11]). If the request is for a static web page,a
server in the web tier serves the requested page. If the request
requires dynamic processing, it is routed to theapplication
tier. The application tier orchestrates access to thedatabase
tier for operations such as purchase processing or maintaining
the contents of the shopping cart.

accessaccess
tiertier

webweb
tiertier

applicationapplication
tiertier

databasedatabase
tiertier

edgeedgeroutersrouters

routingrouting
switchesswitches

authentication, DNS,authentication, DNS,

intrusion detect, VPNintrusion detect, VPN

web cacheweb cache 1st level firewall1st level firewall

2nd level firewall2nd level firewall

load balancingload balancing
switchesswitches

web web
serversservers

web page storageweb page storage
(NAS)(NAS)

databasedatabase
SQL serversSQL servers

storage areastorage area
networknetwork
(SAN)(SAN)

applicationapplication
serversservers

filesfiles
(NAS)(NAS)

switchesswitches

switchesswitches

Internet

Fig. 1. IDC Four Tier Architecture

B. WARD

In WARD, services and applications are replicated across
several geographically dispersed IDCs that are inter-connected
via high-bandwidth links. Once a client request arrives at the
initial IDC, a dispatcher as illustrated in Figure 2 can decide to
service the request locally or redirect it to a less loaded remote
IDC. The objective of the algorithm is to redirect requests only
if the savings in the request’s processing time at the remote

IDC overwhelm the network latency incurred to traverse the
inter-IDC links in both the forward and reverse path. In this
way, end-to-end client delays can be reduced while requiring
changes only to the dispatcher.

Note thatclientscannot determine which IDC will minimize
network plus server delay as clients do not have knowledge
of each IDC’s load and delay characteristics. Thus, clientscan
select the initial IDC via existing DNS round-robin techniques
or they can find the IDC with the smallest network delay using
delay estimation tools such as [12]. Upon arrival at the initial
IDC, WARD will then minimize the remaining service time.

web tier

Internet

application
tier

database tier

Dispatcher

local dispatching

remote dispatching

remote IDCIDC

application tier

web tier

database tier

request
reply

Fig. 2. IDC multi-tiered architecture

WARD therefore provides a foundation for spatial mul-
tiplexing of IDC resources. Namely, as a particular IDC
becomes a hot-spot due to flash crowds [13], [14] or time-of-
day effects [15], load can be transparently redirected to other
IDCs while ensuring a latency benefit to clients. For example,
client access patterns have been observed to followtime-of-
day patterns where server utilization varies with a diurnal
frequency. We can exploit this effect such that no IDC has to
provision for the peak demand. Thus, when the workload to
one IDC is peaking, the workload at an IDC several time zones
away will be much lower, enabling a significant performance
improvement by allowing redirection among IDCs.

C. Redirection algorithm

The objective of the redirection algorithm is to minimize
the total time to service a request. Namely, if a request arrives
at IDC

�
, then the objective is to dispatch the request to IDC�

satisfying
argmin� �� �� � �� � � �� � (1)

where��� denotes the network delay between IDC
�

and
�
,

and�� is the request’s service time at IDC
�
.

In practice,�� can be estimated by measuring the average
load 	� at IDC

�
and using information about the request

type. IDCs periodically exchange load information to update
the load estimates of each others’ processing delays. Similarly,
latency values can be measured among the IDCs.

We consider two redirection policies. The first isper-request
redirection in which each request is sent to the IDC that min-
imizes Equation (1). The second isprobabilistic redirection

nnα

11α

n1
α
1n

α

λn

µn

dispatcher 1µ

M/G/1

M/G/1

requests
λ1

IDC 1

dispatcher
requests

IDC n

Fig. 3. IDC system model.

in which a fraction� � �� � � � of requests are redirected
from IDC

�
to IDC

�
. In particular, we show in the next

section that under certain simplifications there is an optimal
ratio of requests that should be remotely dispatched in order to
minimize the delay of all requests. Once this ratio is known,
the dispatcher remotely redirects requests according to the
computed probability.

III. PERFORMANCEMODEL

In this section, we develop a performance model for wide
area redirection. For a given workload, mean and variance of
service time, and network latency, we derive an expression
for the delay-minimizing fraction of requests that a dispatcher
should redirect to remote IDCs. Moreover, we compute the
average total response time including service- and waiting-
times and end-to-end network latency.1 We then perform
a systematic performance analysis to estimate the optimal
dispatching ratios��� � and to predict the expected request
response time under different parameters, such as the server
load, the end-to-end network latency and the average request
service time.

Figure 3 illustrates the system model for WARD. We model
request arrivals at IDC

�
as a Poisson process with rate� � and

consider a single bottleneck tier modeled by a general service
time distribution having mean� � and variance� �� .

We consider a redirection algorithm in which a request is
redirected from IDC

�
to IDC

�
with probability �� � , i.e.,

we consider probabilistic redirection. Denote	
� � � as the
expected total delay for servicing a request at IDC

�
, and

denote�� � as the one-way network latency for a request sent
from IDC

�
to IDC

�
.

For the general case of a system of� IDC replicas,
denote � ���� � � � � � �� � � � � � � ��� � as a matrix of request
dispatching fractions,�
�� � �� � � � � � � �� � as the vector of
all total delays at an IDC bottleneck tier and� as a matrix of
round-trip times from IDC

�
to

�
such that� � � � �� � � � �� .

Furthermore, denote� � ��� � � � � � �� � as a vector of request
arrival rates at the IDC dispatchers,� � ��� � � � � � � � � as
the average service time,� � ��� � � � � � �� � as the vector
of squared coefficient of variation for the service times, with
� � � ��� ���� .

Result 1: The mean service time for the redirection policy

1Throughout, we use the term end-to-end latency to describe the server
processing time plus the network round-trip time from the local IDC to the
remote and back. We do not consider the client-to-IDC delay.

using a dispatching fraction is given by:

�
�� � � � � � � �� � �� � �� �� �� � � � �� �
� � � (2)

Proof: The total service time is composed of 3 durations:
(i) the network latency of transferring the request to and from
the remote IDC (ii) the queuing time at the IDC and (iii) the
service time at the IDC.

For symmetry reasons, in the following equations we at-
tribute the “costs” to the receiving IDC

�
. First, we assume

that the network latency between the dispatcher and a local
IDC ��� � � and hence, network latency is incurred only by
requests dispatched to a remote IDC as given by:

�� � ��� � � � �� � � (3)

Second, consider the mean waiting time for a request in an
IDC queue before being serviced. In general, the waiting time
for for an M/G/1 queue is:

	� �� � �� �� �� 	� (4)

with 	 � ��.
For any IDC

�
, the arrival rate� is the sum of the requests

that are dispatched from all IDCs
�

to IDC
�
, i.e., � � �! � �� ��� . With this �, Equation (4) can be rewritten for a

single IDC
�

as:

�! � �� ��� ���� �� � ��� �� �� �! � �� ��� �� � � (5)

Finally, the service time for a request at IDC
�

is given by
� �. The addition of these 3 terms for a set of IDCs yields
Equation (2).

From Equation (2), we can compute the optimal dispatching
ratios that minimize the service times over all requests. In
particular, let � � �� ��� � � � � � � ��� � denote the matrix of
optimal request dispatching ratios.

Result 2: The optimal dispatching ratios � are given by:
"
"�

�� � � � � ��� �� � �� �� �� � � � �� �
� � � � � � (6)

with �
� � defined in Equation (2).
To solve Equation (6) for all�� � , we make a set of

simplifying assumptions to reduce the number of unknowns
(for more general solutions, see e.g. [16], [17]). First, we
clearly have that

! � ��� � � �. Second, we assume that all
IDCs have equal processing times, i.e.,� � � � � . Third,
� � # �� �$ ��� � � �, i.e., when considering 2 IDCs with
different �, under steady-state conditions, no requests will be
dispatched from the IDC with a smaller arrival rate to the IDC
with a higher arrival rate.

The optimal dispatching ratios � can be used to predict
the average request service time for a system of IDC replicas.

Result 3: The expected request service time under optimal
dispatching ratios is given by:

�
� �� � � � � � � � �� � �� � �� �� �� � � � � �� �
� � � � (7)

Proof: Equation (7) follows from Result 1 and by using
the optimal dispatching ratios from Equation (6).

IV. N UMERICAL RESULTS

In this section, we first show that wide area redirection is
able to reduce the total access delay. Then, we study the effects
of the key performance factors that affect the total delay.

We consider a system of 2 IDCs with replicas having
the same average request service time�. Furthermore, we
assume a symmetric network with wide area latency between
two IDCs: � �� � �� � � ��, so the IDC round-trip time
is � � � � � . Finally, we set �� � �, which satisfies
�� � �� �$ ��� � �, and denote� �� �� and �� �� ����
for simplicity.

The dispatching ratio is computed based on Equation (2):

	
� �� � � � �� � ���� �� � �� �� �� �� � ��� � (8)

	
� � � � � � ��� � �� � �� �� �� ��� �
� �� (9)

Equations (8) and (9) are solved according to Result 2
to obtain the optimal dispatching ratio��. Henceforth, we
refer to the term�� as the(remote) redirectionratio, i.e. the
fraction of requests dispatched to the remote IDC, and� ��
is the fraction of requests processed on the local IDC. Then,
according to Result 3, the expected total delay of the IDC
system is given by:

	
� �� � � � �� �� ���� �� � �� �� �� �� �� ��� �
�

� � ���� � �� � �� �� �� ���� �
� ���

(10)

If not otherwise stated, we use the following default values:
� � �� �� msec,� � �� �� msec, where these values were
obtained from our testbed and one-way network latency� ���

msec, which corresponds to a speed-of-light latency for two
IDCs separated by 6 time-zones at��� latitude. We will use
	 � �� to denote the total load onall IDCs. For IDCs without
redirection,	 corresponds to the server load on the bottleneck
tier, whereas WARD can split this load among the local and
remote IDCs. To obtain a given value of	, the arrival rate�
will be scaled, with� remaining fixed.

A. The case for wide area redirection

First, we provide evidence that wide area redirection is able
to decrease the user-perceived total delay. We calculate the
total delay of WARD using Equations (6) and (7) and compare
it to the total delay of an IDC without redirection. Figure 4
shows the total delay as a function of the network latency�
for different system loads	.

For a load	 � � ��, improvements are achieved only when
the network latency� � �� msec. For� � �� msec, the
redirection cost exceeds the processing time so that all requests
are serviced locally. However, a significant improvement is
achievable under higher loads. For a moderate load of	 �

0 50 100 150 200 250
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Network latency ∆ [msec]

T
ot

al
 d

el
ay

 [s
ec

]

WARD (ρ=0.5)
No Redirection (ρ=0.5)
WARD (ρ=0.75)
No Redirection (ρ=0.75)
WARD (ρ=0.9)
No Redirection (ρ=0.9)

Fig. 4. Comparison of the total IDC delay with and without wide area
redirection

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Network latency ∆ [msec]

R
ed

ire
ct

io
n

ra
tio

 α

ρ=0.99
ρ=0.95
ρ=0.9
ρ=0.75
ρ=0.5

Fig. 5. Redirection ratio� for different network latencies	 and server loads
.

� ��� and a latency� � �� msec, the total delay is reduced
from 0.16 sec to�0.13 sec using WARD, an improvement
of � 18%. For a heavily loaded system with	 � � �� and
� � �� msec, the total delay is reduced from 0.38 sec without
redirection to�0.15 sec using WARD, an improvement of�
60%. Moreover, for loads	 � � ��, still higher improvements
are predicted by the model.

B. Server load versus network latency

Next, we study the influence of server load and network
latency on the redirection decision. An increased network
latency implies a higher overhead to send a request to a remote
IDC and here we quantify the network latencies for a given
server load, until which we can expect gains out of redirection.
The influence of the network latency� for different server
loads	 on the optimal redirection ratio (Equation (6)) is shown
in Figure 5. Each curve depicts a value of server load	 and
the x-axis denotes the network latency� between two IDCs.

Results with� � � therefore correspond to an IDC with
2 local servers. Observe that in this case, the redirection ratio
� is 0.5 independent of the server load. Since no latency
costs are incurred, the optimal strategy is to equally balance
the load on the two local servers. We make two further
observations: Firstly, for a given network latency, the model
redirects a greater number of requests as the server load
increases. Secondly, for a given server load, the redirection

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Server load ρ

R
ed

ire
ct

io
n

ra
tio

 α

x=1 sec
x=500 msec
x=100 msec
x=50 msec
x=10 msec

Fig. 6. Redirection ratio� for different service times� and server loads
.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Coefficient of variation c

R
ed

ire
ct

io
n

ra
tio

 α

ρ=0.95
ρ=0.9
ρ=0.75
ρ=0.5

Fig. 7. Redirection ratio� for different coefficient of variations� and server
loads
.

ratio decreases as the network latency is increased and goes
to zero when the cost of network latency exceeds the reduction
in server processing time due to redirection. For a non-heavily
loaded system (� � ��), it is advantageous to redirect only
when the network latency� � �� msec, while for a moderate
load of 	 � � ���, redirection is advantageous for network
latency as high as 250 msec. For	 # � ��, the model predicts
redirection ratios of� �� for latencies even higher than 250
msec.

C. Service time

Figure 6 illustrates the effect of the request service time
mean� on the redirection ratio. The x-axis denotes the server
load 	 and each curve denotes a different mean service time.
For a small service time� � �� msec, the redirection ratio�
is 0 for server loads up to	 � � ��. Only above this high load
does the dispatcher send requests to a remote IDC because the
redirection costs exceed the service time on the local IDC.

When the request service time� increases, the redirection
ratio increases for a given server load	. For service times of
50 msec, which is close to the testbed value, an increase in
the redirection ratio starts at	 � � ��. Finally, for � � � sec,
the ratio stays above 42%.

Figure 7 shows the effect of the coefficient of variation c
on the redirection ratio. It can be expected that an increasein
variance leads to an increase in the redirection ratio. Figure 7

−80 −60 −40 −20 0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Measurement error δ [%]

R
ed

ire
ct

io
n

ra
tio

 α

∆=10 msec
∆=25 msec
∆=50 msec
∆=100 msec

Fig. 8. Redirection ratio� for different network measurement errors
�
.

−80 −60 −40 −20 0 20 40 60 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measurement error δ [%]

T
ot

al
 d

el
ay

 [s
ec

]

∆=100 msec
∆=50 msec
∆=25 msec
∆=10 msec

Fig. 9. Total delay for different network measurement errors
�
.

shows the greatest influence of the variance when c increases
from � � to 1 for 	 # � ���.

Hence, our model predicts an increase in redirection ratios
when either the service time or the coefficient of variation
increases. This allows us to predict that future e-commerce
sites designed with greater complexity in their dynamic con-
tent would achieve still higher performance gains from using
wide area redirection.

D. Measurement errors

The dispatcher bases its redirection decision on 2 measured
values: the network latency� and the server load	. So far,
we have assumed that perfect information is available for this
decision. In this section, we study the impact of measurement
errors on the effectiveness of the algorithm and quantify itin
terms oferror tolerance. defined as the percentage error��
that increases the total delay by at most 2%.

First, we study the impact of network latency measurement
errors as follows. Let� denote the true latency from a local
to a remote IDC and back, and

�
� � � � � the measured

value, and
�
� the corresponding round-trip time matrix. The

dispatcher calculates the dispatching ratios using
�
� (Equation

(2))

�
�� � � � � � � �� � �� � �� �
� � � � ��

� �
�
� (11)

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Measurement error ε [%]

R
ed

ire
ct

io
n

ra
tio

 α

ρ=0.95
ρ=0.9
ρ=0.75
ρ=0.5

Fig. 10. Redirection ratio� for different server load measurement errors�.

−20 −15 −10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Measurement error ε [%]

T
ot

al
 d

el
ay

 [s
ec

]

ρ=0.95
ρ=0.9
ρ=0.75
ρ=0.5

Fig. 11. Total delay for different server load measurement errors �.

For the calculation of average total delay, Equation (7) is
used with the true latency values� . The effects of mea-
surement error in network latency on the redirection ratio�
and the resulting average request response time are shown in
Figures 8 and 9 respectively. Each curve denotes a different
(true) latency� , and the x-axis denotes the error� , in percent
of � . A value of 0 on the x-axis corresponds to perfect end-
to-end latency information. The server load is set to	 � � ���.

Figure 8 shows that the redirection ratio changes more for
negative� than for the corresponding positive� . The reason is
that the redirection ratio does not grow linearly with the end-
to-end latency, as shown in Figure 5. As a consequence of the
asymmetry, the total delay increases more for negative� , as
shown in Figure 9. Note, however, that the response times are
not highly sensitive to latency measurement errors and the the
error tolerance is quite high at�

��%.
Likewise, we consider a scenario when the dispatcher has

inaccurate server load measurements, e.g., due to delays inre-
ceiving the measurements. In this scenario, the measured load
at the dispatcher is given by

�	 �
�
��, with

�
� � � � � (where

� is in percent of the correct load) and the corresponding
measured arrival rate by

�
�. The one-way network latency is

set to 36 msec.
First, consider the case of measurement error� � �, when

the dispatcher assumes the server load to be higher than what
it is and hence it redirects more requests than the optimal.
Figure 10 shows that the redirection ratio increases almost
linearly for 	 # � ��, while for 	 � � ��� the ratio doesn’t

start increasing until� # ��� . The extra redirections incur
additional network latencies and hence the total delay also
increases linearly in Figure 11. In particular, for	 # � ��, the
error tolerance is� ���%. Next, consider negative�, when the
dispatcher assumes the local server load to be less than the
actual value and hence redirects pessimistically. As a result,
the load on the local server incurs greater processing times
at the local IDC. As expected, Figure 11 shows that at high
server loads	 # � ��, the total delay is more sensitive for
negative� with an error tolerance of� � ��%.

Thus, comparing the impact of latency and server mea-
surement errors, the error tolerance for network latency is
high at �

��% while that for server load is an order of
magnitude lower at� ��� � � ��%. We thus conclude that
(1) greater accuracy is needed in server load measurements
than network latency and (2) IDC-driven redirection can have
greater robustness than existing client-driven schemes asIDCs
can obtain accurate server load information when compared to
clients, client-side proxies, or DNS.

V. TESTBED IMPLEMENTATION AND EXPERIMENTS

In this section, we describe our prototype implementation
and testbed experiments of the WARD architecture. Our re-
sults provide a proof-of-concept demonstration of wide area
IDC-driven redirection, explore the testbed’s key performance
factors, and validate the performance model.

A. WARD Testbed

Web/Application
Servers

Database
Dispatcher

Database
Servers

RouterClients

IDC 1

IDC 2

Fig. 12. Testbed

The testbed, depicted in Figure 12, consists of a cluster
of Intel Pentium IV 2.0 GHz processor machines running
Linux 2.4.18-14, with 512 MB SDRAM, and a 30 GB ATA-
66 disk drive. One machine is configured as a router and
runs Nistnet [18], an IP-layer network emulation package. The
router separates the remaining machines into 3 domains, 2 for
IDCs and 1 for the client. This setup allows variation of the
network conditions (delay and bandwidth) between the client
and the IDCs as well as between IDCs.

We developed a system architecture depicted in Figure 2.
At the web tier, we use an Apache web server and dynamic
content is coded using PHP scripts at the application tier.
Access to the 4 GB database is provided by a MySQL server.2

2See apache.org, php.net, and mysql.com respectively.

The workload is driven by a client emulator implementing
an e-commerce browsing mix workload characterizing an
online bookstore site [19] following the TPC-W benchmark.3

The client emulator opens a set of� user sessions which last
15 minutes. Each session opens a persistent HTTP connection
to the web server and sends a sequence of requests to the IDC.
Between two requests, the user waits for a configurable pa-
rameter termedthink timebefore the next request is generated.
The mean think time, which we set to 7 sec, together with the
number of users, defines the request arrival rate at the IDC.

At the IDC, the PHP scripts specified in the request are ex-
ecuted by the web and application tier. Every PHP script may
generate one or multiple database queries that are executed
sequentially by the application tier. These queries arriveat the
dispatcher with the arrival rate� used in Section III.

The dispatcher first determines the query type: 95% of the
queries in the browsing mix are read queries while 5% account
for write queries. To ensure consistency among all IDCs, the
dispatcher follows aread-one write-alldispatching strategy
combined with an identicaltotal ordering of writes at all
database servers. That is, all write queries must be executed
at every IDC in the same logical order they arrived at the
dispatcher. To maintain the order, every query is assigned
a unique sequence number. To execute a write query with
number� , all previous queries� � � must be terminated
and all subsequent queries� � � must be queued until� is
finished. Read-one write-all implies that the dispatcher isfree
to send a read query toany IDC whereas write queries must
be processed atall IDCs.

The redirection algorithm therefore works as follows. If a
write query arrives, it is sent to all IDCs and executed in total
order. When a read query arrives, the dispatcher checks for
IDCs which have outstanding write requests. These IDCs are
not considered for redirection because the read query cannot be
processed immediately. Of the remaining IDCs, the dispatcher
selects an IDC by using either theper-queryor, the proba-
bilistic redirection policy. In the per-query redirection policy,
the dispatcher calculates the expected response time by using
measured loads of database tiers to determine if the latency
overhead incurred by remote dispatching is outweighed by the
savings in server processing time. In the probabilistic policy,
the dispatcher uses the optimal redirection ratio computedby
the model and dispatches queries with that probability. We
implement the probabilistic policy such that given a number
of clients, it is configured for the redirection ratio predicted
by the model and hence it doesn’t use the online server load
measurements.

The described consistency issues have to be addressed in
the real WARD implementation, but they are not accounted
for in the performance model. While they limit the ability
of the dispatcher to achieve an optimal redirection ratio, the
above consistency implementation has been shown to scale to
higher throughputs than other techniques [20]. Nevertheless,
we expect that the dispatcher is still able to redirect queries
because (i) the vast majority of the queries are non-conflicting
read queries and (ii) read queries have a larger service time

3See tpcw.org.

50 60 70 80 90 100
0

2

4

6

8

10

12

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
[s

ec
]

Mean CPU load on database server [%]

Fig. 13. Mean database query response times vs mean databaseCPU load
for the 30 read-only MySQL queries in the browsing mix of the TPC-W
benchmark.

than write queries [21].
Finally, we note that while WARD provides a general

redirection mechanism that can be applied to all IDC tiers,
our implementation only redirects before the database tier. This
implementation decision is motivated by studies that foundthat
the database tier is often the bottleneck due to the substantial
processing demands of complex database queries [20].

B. Experimental Setup

The input parameters in our experimental study are the inter-
IDC link latency and the number of clients. The latency is
varied through the Nistnet module at the router. The param-
eters we measure arerequest response timeas perceived by
the clients,query response timeas perceived by the database
dispatcher andremote redirection ratioas achieved by the
database dispatcher. Request response time is defined as the
time elapsed between the generation of a request and the return
of the last byte of the response to the client. Query response
time is defined as the time period between the sending of a
query by the dispatcher to the database and the reception of
the response by the dispatcher. We measure the mean- and 90-
%ile request (query) response time for all requests (queries)
generated during the entire duration of an experiment. The
redirection ratio is defined as the fraction of the number of
queries sent by the dispatcher to a remote database server.

C. Experiments

Here, we first present the offline technique to configure
our per-queryredirection policy with thequery response time
characteristics. Second, we quantify the performance benefits
of the WARD architecture by exploring the trade-off between
the load on the local database server and wide area link
latency. Third, we compare performance gains predicted by
the analytical model of section III with those obtained via
testbed measurements.

1) Offline measurement of query response time character-
istics: In these experiments, we measure the response time
as a function of CPU load, a key input to the per-query
redirection policy. We use one IDC with access to one local
database server. The execution time for a query depends on

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Number of concurrent clients (n)

M
ea

n
C

P
U

 lo
ad

 o
n

lo
ca

l d
at

ab
as

e
se

rv
er

 [%
]

No−Redirection
WARD (∆ = 100 msec)

Fig. 14. Mean database CPU load as a function of the number of concurrent
clients (n).

the number and type of other queries executing at the same
time on the database server, which can be abstracted as the
workload entering the system. Hence, we vary the CPU load
on the database server by increasing the number of clients.
In each case, we measure the mean execution time for each
of the 30 read-only MySQL queries. The resulting delay-load
curve as illustrated in Figure 13 is then used in theper-query
redirection policy.

2) WARD Performance Gains:In this experiment we quan-
tify the delay reductions achieved by theper-queryredirection
policy by considering the trade-off between the two parameters
of wide area link latency and CPU load on the local database
server.

We compare the following two architectures: (1)No-
Redirectionarchitecture with two IDCs, each of which has
access to one local database server and doesn’t employ wide
area redirection and (2)WARD architecture with two IDCs,
each of which has access to one local and one remote database
server and the latency between the two IDCs is� varied as
0, 25, 50 and 100 msec. In both architectures, the workload
arrives at only one IDC, termed “local,” whereas the workload
of the remote IDC is solely created by dispatched requests.
We expect such low-load conditions on remote IDCs several
time-zones away due to thetime-of-dayeffects.

Figure 14 compares the local server CPU of an IDC without
redirection to WARD with an inter-IDC latency of 50 msec. In
the No-Redirection architecture, the CPU load on the database
tier reaches 90% for 200 concurrent users. In contrast, WARD
keeps the local database server load below 60% even for 350
concurrent users.

The high CPU load on the database server in theNo-
Redirectionarchitecture increases the mean request response
time, as shown in Figure 15. For 300 concurrent users, the
mean request response time reaches 5 sec. In contrast, the
mean request service time of WARD is 2.3 sec for an inter-
IDC latency of 50 msec, a 54% reduction. Figure 16 shows that
WARD’s redirection policy dispatches 24% of the database
queries to the remote IDC in this case.

The delay reductions of using wide area redirection in-
creases with increasing CPU load on the local database server.
For 150, 200 and 300 concurrent users, the delay reduction
is 17%, 40% and 54%. In this case, 150 users corresponds

0 20 40 60 80 100
0

1

2

3

4

5

6

Network latency ∆ [msec]

M
ea

n
re

qu
es

t r
es

po
ns

e
tim

e
[s

ec
]

WARD (n=150)
WARD (n=200)
WARD (n=300)
No−Redirection (n=150)
No−Redirection (n=200)
No−Redirection (n=300)

Fig. 15. Mean request response time as a function of the network latency
	 and the number of concurrent clients�.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Network latency ∆ [msec]

R
ed

ire
ct

io
n

ra
tio

 α

n=100
n=200
n=300
n=400

Fig. 16. Redirection ratio as a function of the network latency 	 and the
number of concurrent clients�.

0 20 40 60 80 100
0

2

4

6

8

10

12

Network latency ∆ [msec]

90
−

%
ile

 r
eq

ue
st

 r
es

po
ns

e
tim

e
[s

ec
]

WARD (n=150)
WARD (n=200)
WARD (n=300)
No−Redirection (n=150)
No−Redirection (n=200)
No−Redirection (n=300)

Fig. 17. 90 %-iles of response time as a function of the network latency	
and the number of concurrent clients� .

to a moderate load (80%) while 300 users corresponds to
a heavily loaded local server (92%) with reference to the
figure 14. Hence, we conclude that wide area redirection is
of advantage for both long-term provisioning of resources
when an IDC operator wants to maintain a moderate load
and short-term bottlenecks due to flash-crowds. Similarly,the
redirection ratio (Figure 16) as well as the 90-%ile response
times (Figure 17) increase with the number of concurrent
users. Therefore, WARD achieves a higher throughput than
a system without redirection, as shown in Figure 18.

Thus, this experiment quantifies the performance gains of

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Number of concurrent clients (n)T
hr

ou
gh

pu
t (

nu
m

be
r

of
 r

eq
ue

st
s

se
rv

ic
ed

 p
er

 s
ec

on
d)

No−Redirection
WARD (∆=0)
WARD (∆=50 msec)
WARD (∆=100 msec)

Fig. 18. Throughput obtained for various system configurations.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
[s

ec
]

Total (local+remote) database server load ρ

M/G/1
per−query and probabilistic policy

Fig. 19. Model verification: 1 IDC system

wide area redirection of dynamic content. Once a local server
is overloaded, remote dispatching can be highly effective for
network delays as high as 100 msec.

3) Model validation and redirection policies:We validate
the analytical model of Section III with testbed results forboth
redirection policies. In particular, we compare the redirection
ratios and total response times of a system with two IDC
replicas. For the model, we use Equations (8), (9) as well
as Equation (10) from Section IV with� � �� �� msec and
� � �� �� msec, as measured on an unloaded database server
in our testbed.

Figure 19 compares the mean query response time of the
model and the implementation on a single IDC, as a function
of the server load	. The figure indicates that the model
matches the measured query response time for	 � � ��
within � ��� . Beyond this load, the model deviates from the
implementation because: (1) our M/G/1 model doesn’t take
read-write conflicts into account due to which queries may
take longer to process that what the model predicts and (2) at
high loads there are more queries and thereby greater number
of conflicts.

Next, we compare the model with the two implemented
redirection policies: (1)probabilistic, and (2)per-query. The
per-query policy receives the CPU load measurements every
5 sec and we set the inter-IDC latency to be 25 msec in all
the experiments.

Figures 20 and 21 compare the redirection ratio and query

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Total (local+remote) database server load (ρ)

R
ed

ire
ct

io
n

ra
tio

 α

model
probabilistic policy
per−query policy

Fig. 20. Model verification: redirection ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
[s

ec
]

no redirection
probabilistic policy (WARD)
per−query policy (WARD)

Total (local+remote) database server load ρ

Fig. 21. Model verification: mean response time

response time as a function of the system load. The redirection
ratios of the model and the probabilistic policy are close be-
cause this policy bases itself upon the optimal values predicted
by the model. On the other hand, the per-query policy begins
redirecting earlier and redirects more queries until	 � � ��
compared to both the model and probabilistic policy. The
reason for this behavior is that heavy queries are more sensitive
to load as shown in Figure 13, and hence it is of increasing
value to redirect them at comparatively lower system loads.
Hence we observe a lower mean response time for the per-
query policy for 	 � � �� in Figure 21. When	 � � ��, the
probabilistic policy redirects more queries than the per-query
policy and hence yields lower response times. We attribute
this difference to the probabilistic policy’s better balancing of
requests at fast time-scales.

VI. RELATED WORK

Approaches to minimize web access times can be separated
into different groups: resource vs. request management and,
for the latter, client-side vs server-side redirection.

One approach to minimizing web access times is to ensure
that enough resources are available at IDCs.Server migration
assigns servers that are unused or lightly loadedwithin an IDC
to hosted applications that are suffering from high usage [15].
Server migration involves transfer of the application state from
an existing server to a new server and hence migration times
are on the order of 10 minutes. Therefore, server migration

is a means to avoid bottlenecks over a long period of time
(minutes or hours), e.g., following time-of-day patterns.Our
approach is not only able to address long-term bottlenecks (at
the additional redirection costs), but can also address short-
term bottlenecks, e.g., due to flash-crowds.Server sharing, as
applied to content distribution, e.g., [22], is similar to server
migration, except that a fraction of the resources are assigned.
This option is not applicable to our architecture because we
assume that only entire servers, but not fractions of them, are
assigned to individual sites. However, both server migration
and sharing are orthogonal approaches to request redirection,
and we advocate a combination of the mechanisms.

A significant body of research has focused onclient-side
mechanisms such as request redirection in CDNs [5], [23],
server selection techniques [24], [3], caching [25], mirroring,
and mirror placement [26], [7]. Such techniques are based
on the premise that the network is the primary bottleneck.
However, we have shown that serving dynamic content shifts
the bottleneck onto the IDC. Thus, while such schemes can
be applied to finding the best initial IDC, WARD’s IDC-
driven redirection is essential to jointly incorporating server
and network latencies.

Architectures may also combine client-side and server-side
redirection [27], [28], [29]. These architectures are mostuseful
if the bottleneck is not clearly identified or varying over time.
The server-side redirection mechanism may redirect entireweb
requests if the CPU utilization exceeds a certain threshold.
They conclude that server-side redirection should be used
selectively. In contrast, we see server-side redirection as a
fundamental mechanism for current and future IDCs. Our
redirection mechanism is not threshold-based, but is able to
optimize IDC response times for all CPU utilization values.
Moreover, [27], [28] design policies which consider network
proximity and server load in isolation while our redirection
policy integrates the two.

VII. C ONCLUSIONS

In this paper we presented WARD, an architecture for wide-
area request redirection of dynamic content by Internet Data
Centers. The objective of WARD is to minimize the end-to-end
latency of dynamic content requests by jointly consideringnet-
work and server delays. We developed an analytical model and
proof-of-concept implementation that demonstrated significant
reductions in average request response times. For example,for
our implementation of an IDC running an e-commerce site and
serving 300 concurrent users, WARD can reduce the average
response time by 54% from 5 sec to 2.3 sec. Moreover, the
model predicts that the performance improvements will further
increase when the complexity of dynamic content processing
in web requests increases.

WARD is especially suited to prevent increased response
times due to short-term bottlenecks, e.g., caused by flash
crowds. If the latency costs of redirection are not excessively
high, WARD can also be used to exploit long-time-scale
trends such as time-of-day driven workloads, and thereby
avoid expensive over-provisioning of IDCs. Finally, WARD
is an orthogonal solution to client-side redirection and server

migration policies and can therefore be seamlessly integrated
with such approaches.

VIII. A CKNOWLEDGEMENTS

The authors are grateful for the discussions and insightful
comments from Cristiana Amza (U. Toronto), Rich Friedrich
(HP Labs), Jerry Rolia (HP Labs), Willy Zwaenepoel (EPFL),
and members of the Rice Networks Group.

REFERENCES

[1] J. Guyton and M. Schwartz, “Locating nearby copies of replicated
internet servers,” inProceedings of ACM SIGCOMM’95, Cambridge,
MA, Aug. 1995.

[2] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of
dns-based server selection,” inProceedings of IEEE INFOCOM’01,
Anchorage, AK, Apr. 2001.

[3] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar, “A novel server
selection technique for improving the response time of a replicated
service,” in Proceedings of IEEE INFOCOM’98, San Francisco, CA,
Mar. 1998.

[4] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy, “Consistent hashing and random trees: Distributedcaching
protocols for relieving hot spots on the world wide web,” inACM
Symposium on Theory of Computing, May 1997, pp. 654–663.

[5] L. Wang, V. Pai, and L. Peterson, “The effectiveness of request
redirection on CDN robustness,” inProceedings of OSDI’02, Boston,
MA, Dec. 2002.

[6] M. Karlsson and M. Mahalingam, “Do we need replica placement
algorithms in content delivery networks,” inProceedings of the 7th
International Workshop on Web Content Caching and Distribution
(WCW’02), Boulder, CO, Aug. 2002.

[7] Y. Chen, R. Katz, and J. Kubiatowicz, “Dynamic replica placement
for scalable content delivery,” inProceedings of IPTPS’02, Cambridge,
MA, Mar. 2002.

[8] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placementof web
server replicas,” inProceedings of IEEE INFOCOM’01, Anchorage,
AK, Apr. 2001.

[9] A. Odlyzko, “Data networks are mostly empty and for good reason,”
IT Professional, vol. 1, no. 2, pp. 67–69, Mar. 1999.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level Traffic Measurement from the Sprint
IP Backbone,”IEEE Network Magazine, vol. 17, no. 6, pp. 6–16, Nov.
2003.

[11] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable
content-aware request distribution in cluster-based network servers,” in
Proceedings of the USENIX 2000 Annual Technical Conference, San
Diego, CA, June 2000.

[12] E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” inProceedings of IEEE INFOCOM
2002, New York, June 2002.

[13] V. Padmanabhan and K. Sripanidkulchai, “The case for cooperative
networking,” inProceedings of IPTPS’02, Cambridge, MA, Mar. 2002.

[14] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications forCDNs and web
sites,” inProceedings of the International World Wide Web Conference,
Honolulu, HI, May 2002.

[15] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “QoS-drivenserver
migration for internet data centers,” inProceedings of IWQoS’02,
Miami, FL, May 2002.

[16] J. Sethuraman and M. Squillante, “Optimal stochastic scheduling in
multiclass parallel queues,” inProceedings of ACM SIGMETRICS’99,
Atlanta, GA, May 1999.

[17] S. Borst, M. Mandjes, and M. van Uitert, “Generalized processor sharing
with heterogeneous traffic classes,”ACM SIGMETRICS Performance
Evaluation Review, vol. 29, no. 3, Dec. 2002.

[18] “NISTNET: Network Emulation Package,”
http://snad.ncsl.nist.gov/itg/nistnet/.

[19] C. Amza, A. Cox, and W. Zwaenepoel, “Conflict-aware scheduling for
dynamic content applications,” inProceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS’03), Seattle,WA,
Mar. 2003.

[20] C. Amza, A. Cox, and W. Zwaenepoel, “Distributed versioning:
Consistent replication for scaling back-end databases of dynamic content
web sites,” inProceedings of the 4th ACM/IFIP/Usenix Middleware
Conference, Rio de Janeiro, Brazil, June 2003.

[21] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel, “Specification and
implementation of dynamic content benchmarks,” inProceedings of the
5th IEEE Workshop on Workload Characterization (WWC-5), Austin,
TX, Nov. 2002.

[22] D. Villela and D. Rubenstein, “Performance analysis ofserver sharing
collectives for content distribution,” inProceedings of IWQoS’03,
Monterey, CA, June 2003.

[23] J. Kangasharju, K. Ross, and J. Roberts, “Performance evaluation
of redirection schemes in content distribution networks,”Computer
Communications, vol. 24, no. 2, pp. 207–214, Feb. 2001.

[24] R. Carter and M. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” inProceedings of IEEE
INFOCOM’97, Kobe, Japan, Apr. 1997.

[25] D. Karger, A. Sherman, A. Berkhemier, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” inProceedings of the 8th International World
Wide Web Conference, May 1999.

[26] S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror
placement on the internet,” inProceedings of IEEE INFOCOM’01,
Anchorage, AK, Apr. 2001.

[27] V. Cardellini, M. Colajanni, and P. Yu, “Geographic load balancing for
scalable distributed web systems,” inProceedings of MASCOTS’00, San
Francisco, CA, Aug. 2000.

[28] M. Rabinovich, Z. Xiao, and A. Aggarwal, “Computing on the edge:
A platform for replicating internet applications,” inProceedings of the
8th International Workshop on Web Content Caching and Distribution,
Hawthorne, NY, Sept. 2003.

[29] V. Cardellini, M. Colajanni, and P. Yu, “Request redirection algorithms
for distributed web services,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 4, pp. 355–368, Apr. 2003.

