Opportunistic Spectrum Usage: Bounds and a Multi-band CSMA/CA Protocol

Ashu Sabharwal, Vikram Kanodia and Ed Knightly ECE, Rice University

Ashu Sabharwal

Rice University

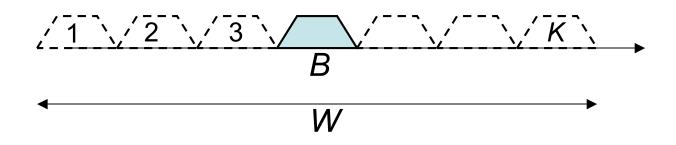
Commonly Held Vision

- High throughput
- High availability
- Economic viability

Killer app is the network itself

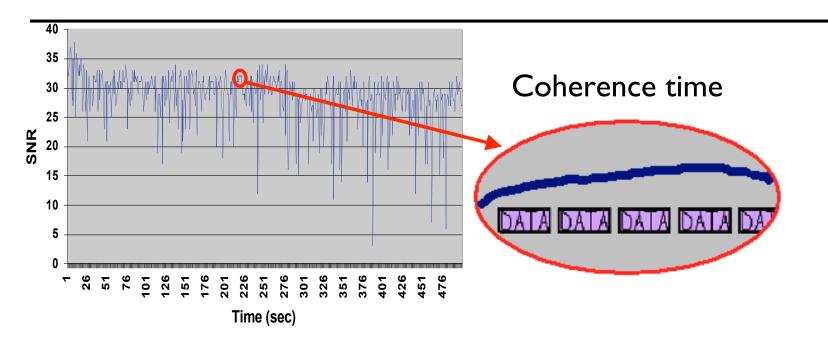
- Fast cheap access in public places, homes
- Like utilities (only mobile)

Rice University

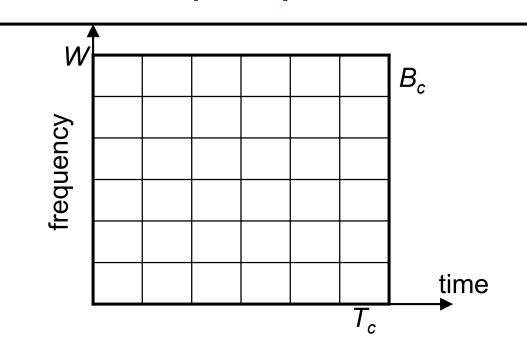

Common "Complaints"

- Not enough spectrum
 - Small amount of commercial spectrum \Rightarrow low data rates
 - True, but scarcity a by-product of an antiquated FCC
- A large fraction of allocated spectrum is unused
 - New opportunities, new FCC policies
 - Wireless LAN has 80+ MHz, we use only ~20 MHz
- Wideband systems expensive to build
 - True a decade ago
 - Ultra-wideband radios, cognizant radios,...
- Claims
 - Lots of spectrum available, we just don't use it well
 - Opportunities to exploit large amounts of spectrum cheaply

Outline

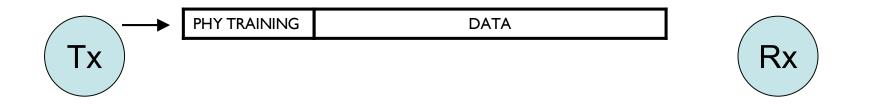

- Opportunistic use of spectrum
 - Capacity-measurement tradeoff
 - Guidelines on channelization
- A protocol implementation
 - MOAR protocol
 - Optimal skipping rule
 - Simulation results
- Conclusions

Basic Setup

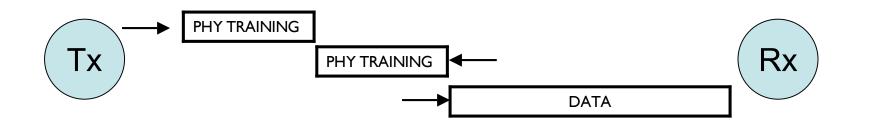

- Large bandwidth, W Hz
- Divided into K bands of B Hz each
- Examples
 - IEEE 802.11b: 3 bands
 - IEEE 802.11a:8 bands

Facts About Wireless

- Coherence time
 - Time for which channel gain is almost constant
- Coherence bandwidth
 - Bandwidth over which channel gain is almost constant


Time-frequency Partition

- Partition the time-frequency plane into $(T_{c}B_{c})$ tiles
- Each tile characterized by one complex gain
 - $Y_i = H_i X_i + noise$
 - $SNR_i = |H_i|^2$ such that $E(SNR_i) = SNR$
- Channel gain H_i unknown to both transmitter and receiver


Ashu Sabharwal

Obtaining Channel Knowledge

- Transmitters and receivers do not know the channel
- Time-variation \Rightarrow periodic measurements required
- Channel measurement consumes resources
 - One-way : τ fraction of total time

Obtaining Channel Knowledge

- Transmitters and receivers do not know the channel
- Time-variation \Rightarrow periodic measurements required
- Channel measurement consumes resources
 - One-way : τ fraction of total time
 - Two-way : 2τ fraction of total time

Genie-aided Capacity

- Assume all K band channels are known perfectly
- Capacity-achieving method chooses the best band

$$egin{aligned} R^*(K) = & B\mathbb{E}\left[\log\left(1 + \max_{i=1,...,K} SNR_i
ight)
ight] \ &\sim & B\log\left(\overline{\mathsf{SNR}}\log K
ight) \end{aligned}$$

- Gains from opportunism
 - Linear in per-band bandwidth, B
 - Doubly logarithmic growth in number of bands, K
 - Large number of bands not useful, large bandwidth is

Single-rate Transmission

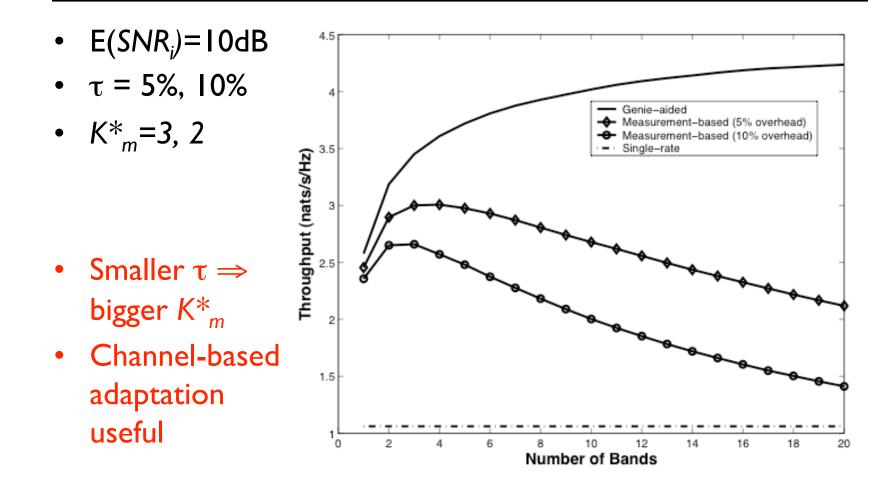
- Transmitter makes no attempt to learn the channel
 - Chooses a fixed rate R
 - Only receiver measures the channel with overhead $\boldsymbol{\tau}$
 - When current channel capacity less than R, the packet is lost
- Net throughput

$$R_s = rac{1}{1+ au} R ext{Prob} \left[B \log \left(1 + \mathsf{SNR}_i
ight) > R
ight]$$

• Throughput is independent of # of bands, K

Measurement-based Band Selection

- Measure K_m bands before sending data
 - Overhead = $K_m(2\tau)$ fraction of total time
 - Grows linearly with number of measured bands
 - Assume perfect estimates
- Choose the best possible band


$$egin{aligned} R_m(K_m) &= & rac{1}{1+2 au K_m} B\mathbb{E} \left[\log \left(1 + \max_{i=1,...,K} SNR_i
ight)
ight] \ &= & rac{1}{1+2 au K_m} R^*(K_m) \end{aligned}$$

Optimal Number of Bands

$$egin{aligned} R_m(K_m) &= & rac{1}{1+2 au K_m} B\mathbb{E} \left[\log \left(1 + \max_{i=1,...,K} SNR_i
ight)
ight] \ &= & rac{1}{1+2 au K_m} R^*(K_m) \end{aligned}$$

- $R^*(K_m)$ grows doubly-logarithmic in K_m
- Overhead grows linearly in K_m
- As $K_m \uparrow$, $R_m(K_m) \rightarrow 0$
- More opportunism ≠ more throughput
- In fact, there is an optimal K^*_m

Numerical Example

More Bands or More Bandwidth ?

- Given bandwidth W=KB, how should we divide it
 - More bands, K? Or
 - More bandwidth/band, B?
- Proposition: For both genie-aided and measurement-based systems, B=W is throughput optimal.
- If you can, do not divide into smaller bands
 - Cost could be a factor
 - Unclear if network-wide optimal

Recap

- The short time-scale opportunism has its limits
 - Measurement overhead Vs. the benefit derived from it
 - Optimal strategy is to check a small number of bands
- Analogy for students
 - Many great research topics, but jump too often and the overhead will kill you

Outline

- Opportunistic use of spectrum
 - Capacity-measurement tradeoff
 - Guidelines on channelization
- A protocol implementation
 - MOAR protocol
 - Optimal skipping rule
 - Simulation results
- Conclusions

Goals for Protocol Design

• Context is IEEE 802.11a/b/g

- Coherence bandwidth is I-3 MHz
- Multiple bands (11+) which are >5MHz
- Some bands completely orthogonal (3 to 8)
- Both temporal and spectral opportunism available
- Two main parts
 - Accessing the floor
 - Measuring and choosing the right band

MOAR Protocol Sketch

- Accessing the floor
 - Assign a home band for all the nodes
 - Everyone contends in the home band using IEEE 802.11 DCF
 - Use 4-way handshake (RTS/CTS/DATA/ACK)
- Measuring channel quality in different bands
 - RTS/CTS used for channel measurement
 - If band SNR < threshold, skip to a new band (piggybacked in CTS)
 - Continue skipping till you beneficial
- Multi-band Opportunistic Auto-rate (MOAR)
 - Stopping rule
 - Adaptation for each node

Stopping Rule

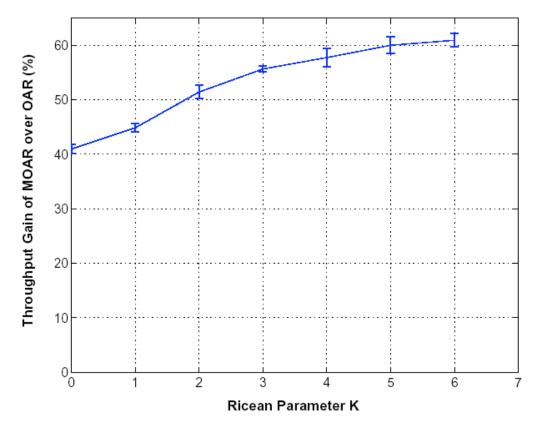
- Nodes make a run-time decision on how many bands to measure
 - The number different for each node
 - Number varies with time due to node mobility
- Pose it as stopping rule problem
 - Marriage problem: How many people you meet before making THE decision ?
- In our problem
 - Recall is possible, but need to ensure no one else has the band after we left
 - Conservative approach: stopping rule *without* recall

Optimal Stopping Rule

- Optimal rule is threshold based
 - If $Rate_n < V^*$, continue; if $Rate_n > V^*$ stop
 - $N^* = \min\{n \ge 1 : Rate_n \ge V^*\}$

•
$$V^* = E \max(Rate_I, V^*) - c$$

$$\int_{V^*}^{\infty} (Rate - V^*) dF(Rate) = c$$

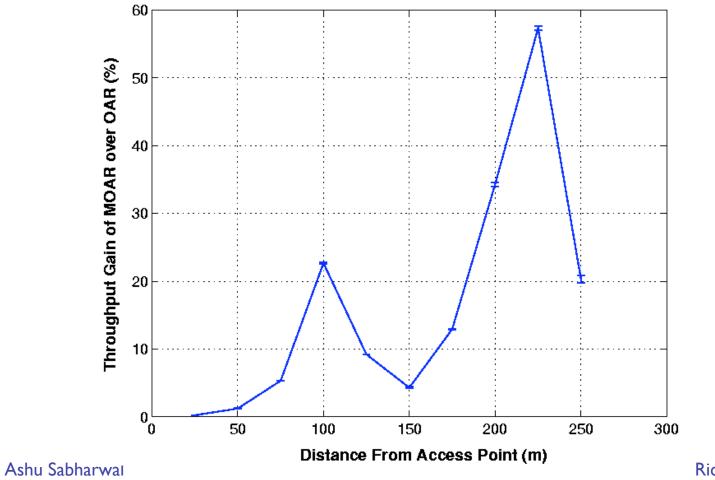

- F(Rate) represents the Rate distribution
- c is cost of measurement
- F(Rate) depends
 - Average SNR \Leftrightarrow Fading parameters K-factor, distance,...

Using Time Coherence

- To exploit time coherence (OAR)
 - Send multiple back to back packets
 - Number of packets = (Current rate)/(Base rate)
 - Higher rates imply higher number of packets
- OAR ensures
 - Same time-fairness as single-rate IEEE 802.11
 - Opportunistically reduces contention
 - Gets large gains over IEEE 802.11
- Whenever skipping stops
 - Send number of packets based on OAR

MOAR Throughput Gains

- Temporal opportunism OAR
- Temporal + spectral opportunism MOAR
- Gains of 40%-60% increasing with Ricean K-factor and SNR variance



Ashu Sabharwai

Rice University

Effect of Node Distance

- Greatest help when far away
- Non-monotonic due to rate-SNR thresholds

Rice University

Conclusions

- Case for spectral reuse
 - Many services sporadically used
 - Reuse spectrum when available
- Reusing requires finding availablility
 - Interference, channel quality
 - Fundamental tradeoff between *discovering* and *using* opportunism
- Real gains available, nonetheless
 - Practical protocol in 802.11 framework
 - Many-fold gain over current standards