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Abstract

Networks that support multiple services through “link-sharing” must address the fundamental con-

flicting requirement betweenisolation among service classes to satisfy each class’ quality of service

requirements, and statisticalsharingof resources for efficient network utilization. While a number of

service disciplines have been devised which provide mechanisms to both isolate flows and fairly share

excess capacity, admission control algorithms are needed which exploit the effects of inter-class resource

sharing. In this paper, we develop a framework of usingstatistical service envelopesto study inter-class

statistical resource sharing. We show how this service envelope enables a class to over-book resources

beyond its deterministically guaranteed capacity by statistically characterizing the excess service avail-

able due to fluctuating demands of other service classes. We apply our techniques to several multi-class

schedulers, including Generalized Processor Sharing, anddesign new admission control algorithms for

multi-class link-sharing environments. We quantify the utilization gains of our approach with a set of

experiments using long traces of compressed video.

1 Introduction

Future integrated services networks will support heterogeneous Quality of Service (QoS) specifications

and traffic demands. For example, a deterministic service [21] uses worst-case resource allocation to sup-

port applications requiring packet delivery without losses or delay bound violations; a statistical service

[14] achieves a statistical multiplexing gain and providesstatistical QoS guarantees with controlled “over-

booking” of resources; a measurement-based service [10] supports QoS by basing admission control deci-

sions on empirical observations of aggregate traffic behavior; best-effort services support applications with

less stringent QoS requirements such as bulk data transfer.With appropriate admission control and traffic

scheduling, these services and others can co-exist in a single network, as admission control limits the num-

ber of admitted traffic flows to ensure that each class’ QoS requirements are met, and packet schedulers

ensure that packets are assigned the priority levels neededto meet their QoS objectives.

In a link sharing environment as outlined in [7], traffic classk is allocated capacity

k

such that whenever

packets from classk are backlogged, the class receives service at a rate of at least 

k

. If classk is not
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backlogged, then classk’s unused capacity is distributed fairly among backlogged sessions. Consequently,

classes can be assured to meet their respective QoS requirements, regardless of the behavior of other traffic

classes, allowing any number of services to co-exist in the network.

In the literature, a number of service disciplines have beendesigned to support such link sharing ob-

jectives [7, 2]. For example, [2] develops a class of Hierarchical Packet Fair Queueing algorithms focusing

on an algorithm’s fairness, complexity, and ability to provide low end-to-end deterministic delay bounds.

While scheduling algorithms for efficiently and fairly allocating excess capacity to backlogged classes are

an important aspect of a link-sharing network, an admissioncontrol policy that enables one class of traffic

to quantify the improved QoS it will receive due to capacity unused by other classes has not been addressed.

In addition to service disciplines, a number of admission control algorithms have also been designed both

for deterministic services which do not exploit statistical resource sharing [5, 17], as well as statistical [14,

4, 6, 11, 22] and measurement-based services [10] which do. However, such admission control algorithms

consider traffic classes in isolation, and while a statistical multiplexing gain is achievedwithin a particular

traffic class,inter-classresource sharing is not addressed. In particular, [6, 22] study statistical service for

Generalized Processor Sharing (GPS) [17], and while the “isolation” property of GPS is exploited for multi-

node analysis, inter-class statistical resource sharing is not addressed. Moreover, while several previous

studies do consider inter-class sharing from the perspective of scheduling [8, 9] or video transmission [1],

general inter-class link sharing environments have not been addressed.

In this paper, we address the problem of inter-class statistical resource sharing. Our contribution is

to develop a theoretical framework for inter-class resource sharing, and to derive admission control algo-

rithms for several important schedulers. Our key techniqueis to develop a framework ofstatistical service

envelopesto study the problem. Inspired by [5], we define a statisticalservice envelope as a probabilistic

description of the service available to a traffic class as a function of interval length. We use this service enve-

lope to characterize the additional capacity available to atraffic class beyond the minimum deterministically

guaranteed capacity set aside by the link sharing rules. In this way, we statistically capture the fluctuating

excess capacity left unused by one traffic class so that another class may exploit an inter-class statistical

multiplexing gain and potentially admit additional trafficflows that would not otherwise have been deemed

admissible. Thus, we use the statistical service envelope as a tool for overbooking inter-class resources in a

controlled manner, so that a class can probabilistically quantify the additional resources available in a link

sharing environment.

We apply this framework of statistical service envelopes tothree multi-class service disciplines, namely,

Strict Priority (SP), Earliest Deadline First (EDF), and link-sharing GPS [7, 2]. We show that while the

concept of a statistical service envelope was implicitly used in previous studies of SP [11], explicitly com-

puting the service envelope of other traffic classes provides a simpler analysis and allows us to uniformly

treat deterministic and statistical service classes.

For GPS, we conceptually partition traffic classes intoisolation classes andsharingclasses depending

on whether or not the traffic class will exploit the effects ofinter-class resource sharing in making admission

control decisions. For example, a deterministic service isan isolation class as excess capacity from other

traffic classes is not guaranteed in the worst case and hence astatistical envelope of excess capacity cannot
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improve this class’ admissible region. We then bound the total service received by all sharing classes and

show how the weighted fairness property of GPS can then be used to derive each class’ service envelope. In

this way, admission control for eachsharingclass can characterize the capacity available beyond its guar-

anteed rate, incorporating the relative weights and trafficdemands of all other traffic classes, and improving

the class’ admissible region.

We illustrate the potential utilization gains of our inter-class resource sharing scheme with a set of trace-

driven simulation experiments using long traces of MPEG-compressed video. As an illustrative example

with a 45 Mbps link supporting equally weighted deterministic and statistical service classes with the GPS

service discipline, we find that the average utilization of the link can be improved from 47.7% to 84.6% by

using the statistical service envelope to characterize theexcess capacity of the deterministic class.

2 Statistical Service Envelopes: Theory and Applications

In this section, we define statistical service envelopes anddevelop their applications to inter-class resource

sharing. In particular, we first study the delay distribution for a single class using statistical traffic envelopes

and deterministic service envelopes. Next, we extend this analysis to include statistical traffic envelopes and

statisticalservice envelopes. Finally, we illustrate the applicationof statistical service envelopes by deriving

admission control tests for SP and EDF schedulers using thistheory.

2.1 Multi-Class Queueing Concepts

Here, we introduce two key concepts for inter-class resource sharing. First, we define essential traffic: for a

particular classn, this refers to the total class-n traffic that must be serviced in order for classi to meet its

delay constraints. The second concept is available service, a characterization of the capacity available to a

class as a function of interval length.

Throughout this paper, we model a multiplexer by a discrete-time infinite buffer queue in which fluid

flows into and out of the buffer only at discrete time slots. For traffic classi, let Xi

(t) denote its aggre-

gate arrivals in time slott, and letXi

(s; t) denote the total arrivals in time interval[s; t℄, i.e.,Xi

(s; t) =

P

t

h=s

X

i

(h). Without loss of generality, we assume thatX

i

(�; �), i = 1; 2; � � �, are independent. LetY i

(t)

represent the amount of fluid served for traffic classi in time slott, and denoteY i

(s; t) as the total fluid

served in time interval[s; t℄, i.e.,Y i

(s; t) =

P

t

h=s

Y

i

(h).

DenotingQi

(t) as the backlog of classi at the end of time slott, Qi

(t) is given by

Q

i

(t) = max

s�t

fX

i

(s; t)� Y

i

(s; t)g: (1)

Classi is said to be continually backlogged in the interval[s; t℄ if Qi

(h) > 0, 8 h 2 [s; t℄.

Definition 1 (Essential Traffic) The essential traffic of classn with respect to classi is defined as

X

n

D

i

(s; t) = X

n

(s; t+D

i

) \ Y

n

(s; t+D

i

) (2)
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The essential traffic has an important interpretation: suppose a class-i packet arrives at timet and is serviced

exactly at its delay boundt + D

i

. ThenXn

D

i

(s; t) is the class-n traffic which will be serviced before the

class-i packet. As we will show below, the essential traffic is a function of the particular service discipline,

and plays a key role in characterizing inter-class resourcesharing.

Definition 2 (Available Service) Let eXi

(s; t) denote the minimal classi input such that classi is contin-

uously backlogged in[s; t℄. The available service of classi in [s; t + D

i

℄ is defined as the classi output
e

Y

i

D

i

(s; t) given this minimally backlogging input trafficeXi

(s; t), and other classes’ input traffic as their

essential trafficXn

D

i

(s; t), n 6= i.

Note that the available serviceeY i

D

i

(s; t) is a function of the scheduling mechanism and the essential

traffic Xn

D

i

(s; t), n 6= i. Notice further thateY i

D

i

(s; t) is independent of the input traffic of classi; whereas

theactualoutput processY i

(s; t +D

i

) is decided byall classes’ inputs. By using this notion of available

service, we decouple classi’s input trafficXi

(s; t) from its availabe serviceeY i

D

i

(s; t), making eY i

D

i

(s; t) a

pure description of available network resources, separatefrom the traffic that is actually sent.

We next review several facts about stochastic ordering1 that are used later in this section.

Lemma 1 LetX
i

, i = 1; � � � ; n, be independent random variables with distributionsG

i

(�) , i = 1; � � � ; n,

respectively andY
i

, i = 1; � � � ; n, be independent random variables with distributionsF

i

(�), i = 1; � � � ; n,

respectively, ifX
i

�

st

Y

i

for i = 1; � � � ; n, then

1.
P

n

i=1

X

i

�

st

P

n

i=1

Y

i

:

2. f(X
1

)�

st

f(Y

1

) for any increasing functionf .

3. 
�
P

n

i=1

X

i

�

st


�

P

n

i=1

Y

i

for any real variable
.

4. Y
i

= F

�1

i

(G

i

(X

i

)), i = 1; � � � ; n, are independent random variables with distributionsF
i

(�) , i =

1; � � � ; n, respectively andX
i

� Y

i

for i = 1; � � � ; n.

Proof: See [19] for detail. 2

2.2 Statistical Service with Deterministic Service Envelopes

Deterministic service is studied in [5] using deterministic service envelopes and deterministic traffic en-

velopes. Here, we first study statistical service withstatistical traffic envelopes anddeterministicservice

envelopes, and later focus onstatisticalservice envelopes. First, we formally define both deterministic and

statistical traffic envelopes and deterministic service envelopes.

Definition 3 (Deterministic Service Envelope)A non-decreasing non-negative functionsi
D

i

(t) is a deter-

ministic service envelope of traffic classi, if for any backlogged interval[u+1; u+ t℄, the available service

satisfies2

e

Y

i

D

i

(u+ 1; u+ t) � s

i

D

i

(t):

1Throughout,X�
st

Y (stochastic inequality) denotesP [X > z℄ � P [Y > z℄ for all z.
2Throughout,Y � X denotes almost sure inequality,P [Y � X℄ = 1.
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To illustrate the concept of a deterministic service envelope, note that for a GPS server, a service class with

guaranteed rategi, satisfieseY i

D

i

(u+ 1; u+ t) � s

i

D

i

(t) = g

i

(t+D

i

):

Definition 4 (Deterministic Traffic Envelope) [15] A non-decreasing non-negative functionbi(t) is a de-

terministic traffic envelope of classi, if for any interval[u+ 1; u+ t℄, the input traffic satisfies

X

i

(u+ 1; u+ t) � b

i

(t):

Definition 5 (Statistical Traffic Envelope) A sequence of random variablesBi

(t) is a statistical traffic

envelope of classi, if for any interval[u+ 1; u+ t℄, the input traffic satisfies

X

i

(u+ 1; u+ t)�

st

B

i

(t):

In other words,bi(t) describes the maximum class-i arrivals in any interval of lengtht, whereasBi

(t)

describes the distribution of arrivals in intervals of length t. Without loss of generality, we assume that

X

i

(�; �) andXj

(�; �) are independent andBi

(�) andBj

(�) are independent ifi 6= j.

DenotingDi

t

as the virtual delay experienced by a bit of classi arriving at time slott, the key QoS metric

that we consider is the probability of (virtual) delay boundviolation,P [D

i

t

> D

i

℄. As long as

lim

t!1

EX

i

(1; t)

t

< lim

t!1

s

i

D

i

(t)

(t+D

i

)

(the stability condition), andXi

(t) is stationary and ergodic,P [D

i

t

> D

i

℄ converges to a steady state tail

probabilityP [D

i

> D

i

℄ [16].

0

D

Y

X

Time

Bits

(t)Q
i

(1,t)
i

(1,t)
i

(t)
i

Figure 1: Delay and Buffer Occupancy

Figure 1 shows the delay and buffer occupancy of classi in terms ofXi

(1; t) andY i

(1; t) if the buffer

is initially empty. The delayDi

t

of a class-i arrival att is defined as [5]

D

i

t

= minf� : � � 0 andXi

(1; t) � Y

i

(1; t+�)g: (3)
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Lemma 2 For a delay boundD
i

, the event of delay bound violation of classi at time slott satisfies

fD

i

t

> D

i

g � fmax

s�t

fX

i

(s; t)�

e

Y

i

D

i

(s; t)g > 0g: (4)

Proof. By definition

fD

i

t

> D

i

g � fX

i

(1; t) � Y

i

(1; t+D

i

) > 0g

� fmax

s�t

fX

i

(s; t)� Y

i

(s; t+D

i

)g > 0g:

Observe that ifmax

s�t

fX

i

(s; t) � Y

i

(s; t+D

i

)g > 0, thenmax

s�t

fX

i

(s; t)�

e

Y

i

D

i

(s; t)g > 0. This

is because ifmax

s�t

fX

i

(s; t)� Y

i

(s; t+D

i

)g > 0, there must exist an

s

�

= maxfs : s < t andQi

(s) = 0g

such that

max

s�t

fX

i

(s; t)� Y

i

(s; t+D

i

)g = X

i

(s

�

+ 1; t)� Y

i

(s

�

+ 1; t+D

i

);

and[s� + 1; t +D

i

℄ is a backlogged interval. Furthermore, sinceeY i

D

i

(s

�

+ 1; t) is the available service in

[s

�

+ 1; t+D

i

℄, we have
e

Y

i

D

i

(s

�

+ 1; t)�Y

i

(s

�

+ 1; t+D

i

);

so that

fmax

s�t

fX

i

(s; t)� Y

i

(s; t+D

i

)g � 0g � fmax

s�t

fX

i

(s; t)�

e

Y

i

D

i

(s; t)g � 0g:

Thus

fD

i

t

> D

i

g � fmax

s�t

fX

i

(s; t)�

e

Y

i

D

i

(s; t)g > 0g: 2

Theorem 1 For service classi with deterministic service envelopesi
D

i

(t) and statistical traffic envelope

B

i

(t), the probability of class-i delay bound violation satisfies:

P [D

i

t

> D

i

℄ � P [max

u�0

fB

i

(u)� s

i

D

i

(u)g > 0℄; 8D

i

2 [0;1); (5)

whereBi

(u) is a rondom variable with the same distribution asBi

(u).

Proof. From Lemma 2,

P [D

i

t

> D

i

℄ � P [max

u�t

fX

i

(u; t)�

e

Y

i

D

i

(u; t)g > 0℄: (6)

SinceXi

(u; t)�

st

B

i

(t � u + 1) , by Lemma 1, there exists a random variableBi

(t� u+ 1) with the

same distribution asBi

(t � u + 1) such thatXi

(u; t)�B

i

(t� u+ 1). Furthermore, by Definition 3,
e

Y

i

D

i

(u; t)�s

i

D

i

(t� u+ 1). Thus, we have

fmax

u�t

fX

i

(u; t)�

e

Y

i

D

i

(u; t)g > 0g � fmax

u�0

fB

i

(u)� s

i

D

i

(u)g > 0g:

Finally, we have

P [max

u�t

fX

i

(u; t)�

e

Y

i

D

i

(u; t)g > 0℄ � P [max

u�0

fB

i

(u)� s

i

D

i

(u)g > 0℄: 2

Thus, the theorem provides a general multi-class statistical delay bound using the lower bound of a classes’

available servicesi
D

i

(t).
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2.3 Statistical Service with Statistical Service Envelopes

Theorem 1 enables us to exploit the statistical multiplexing gain of flows within a service class. This result

is quite general and as we show below can be applied to a wide class of schedulers. However, while the

deterministic service envelopesi
D

i

(t) provides isolation among service classes and simplifies admission

control, it precludes statistical inter-class resource sharing. In multi-class schedulers such as SP, EDF, and

GPS, the utilization gains available from exploiting inter-class resource sharing can be significant. Next, we

introduce a statistical service envelope to study the inter-class resource sharing problem, and develop new

theory to calculate the delay bound violation probability using statistical service envelopes.

In a multi-class server, the available service for classi, eY i

D

i

(u; t), is a function of the input traffic in

other classes and the particular service discipline which specifies how to schedule services among competing

classes. The interference among classes is reflected ine

Y

i

D

i

(u; t), and in some cases, it is possible that the

available service is far greater than the minimally guaranteed service, i.e.,eY i

D

i

(u; t) � s

i

D

i

(t � u + 1).

Thus we define a statistical service envelope as a way to characterize the available service beyond the

deterministically guaranteedsi
D

i

(t).

Definition 6 (Statistical Service Envelope)A sequence of random variablesSi
D

i

(t) is a statistical service

envelope of classi’s traffic, if for any interval[u+1; u+ t℄, the available serviceeY i

D

i

(u+1; u+ t) satisfies

e

Y

i

D

i

(u+ 1; u+ t)�

st

S

i

D

i

(t):

Notice that while a deterministic service envelopes

i

D

i

(t) describes the service of a class in isolation, the

statistical service envelopeSi
D

i

(t) describes inter-class resource sharing. We employS

i

D

i

(t) in the delay

distribution calculation with the following theorem.

Theorem 2 For service classi with statistical service envelopeSi
D

i

(t) and statistical traffic envelopeBi

(t),

the probability of class-i delay bound violation satisfies:

P [D

i

t

> D

i

℄ � P [max

u�0

fB

i

(u)� S

i

D

i

(u)g > 0℄; 8D

i

2 [0;1); (7)

whereBi

(u) andSi
D

i

(u) have the same distribution asBi

(u) andSi
D

i

(u) respectively.

Proof. From Equation (6),

P [D

i

t

> D

i

℄ � P [max

u�t

fX

i

(u; t)�

e

Y

i

D

i

(u; t)g > 0℄: (8)

SinceXi

(u; t)�

st

B

i

(t�u+1) and eY i

D

i

(u; t)�

st

S

i

D

i

(t�u+1), by Lemma 1, there exist random variables

B

i

(t� u+ 1) andSi
D

i

(t� u+ 1) with the same distribution asBi

(t�u+1) andSi
D

i

(t�u+1) respectively

such thatXi

(u; t)�B

i

(t� u+ 1) and eY i

D

i

(u; t) � S

i

D

i

(t� u+ 1).

Thus, we have

P [max

u�t

fX

i

(u; t)�

e

Y

i

D

i

(u; t)g > 0℄ � P [max

u�t

fB

i

(t� u+ 1)� S

i

D

i

(t� u+ 1)g > 0℄

� P [max

u

fB

i

(u)� S

i

D

i

(u)g > 0℄: (9)
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Thus

P [D

i

t

> D

i

℄ � P [max

u

fB

i

(u)� S

i

D

i

(u)g > 0℄: 2 (10)

Notice that the theorem applies to any traffic characterization B(�) and any inter-class relationshipS(�).

As we show below,S(�) is determined by the particular service discipline, as it isthe service discipline

which determines the manner in which multiple classes interact (with weighted fairness, strict priority, etc.)

and hence the extent to which classes are strictly isolated or share system resources. Below we employ

Theorem 2 and our framework of statistical service envelopes to devise admission control algorithms for

multi-class servers. In this way, admission control can exploit the available inter-class statistical resource

sharing that is provided by the scheduler.

2.4 Strict Priority

Admission control for strict priority schedulers was studied in [15] for deterministic service. In [11], approx-

imate tests were developed for statistical service. Here, we approach the problem using service envelopes

and obtain a general and accurate multi-class admission control test which supports multiple deterministic

and statistical service classes.

Lemma 3 Consider an SP scheduler with N priority queues, link speedC, and the aggregate traffic in class

i bounded byBi

(t) and bi(t), with i = 1; : : : ; N denoting the priority level from higher priority to lower

priority. The statistical service envelope for classi with delay boundD
i

is

S

i

D

i

(t) = (C(t+D

i

)�

i�1

X

n=1

B

n

(t+D

i

))

+ (11)

and the deterministic service envelope for classi is

s

i

D

i

(t) = (C(t+D

i

)�

i�1

X

n=1

b

n

(t+D

i

))

+ (12)

wherebi(t) =

P

j

b

i

j

(t); B

i

(t) =

P

j

B

i

j

(t); and bi
j

(t) and Bi

j

(t) are the respective deterministic and

statistical envelopes of flowj in classi.

Proof. Consider class-i arrivals att which have deadlinet+D

i

. Under strict priority, the essential traffic

for higher priority classes consists of all traffic arrivingthroughout[s; t+D

i

℄, whereas lower priority classes

have no effect on classi and hence have no essential traffic. Thus, we have

X

n

D

i

(s; t) =

(

X

n

(s; t+D

i

) n < i

0 n > i:

(13)

Furthermore, since the total available service in the interval [s; t + D

i

℄ is C(t � s + D

i

+ 1) and

X

n

(s; t+D

i

), n = 1; 2; � � � ; i�1, are independent andXn

(s; t+D

i

)�

st

B

n

(t+D

i

�s+1), by Lemma 1,
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the remaining capacity available to a minimally backloggedclass-i flow is given by

e

Y

i

D

i

(s; t) = (C(t� s+D

i

+ 1)�

X

n

X

n

D

i

(s; t))

+

= (C(t� s+D

i

+ 1)�

i�1

X

n=1

X

n

(s; t+D

i

))

+

�

st

(C(t� s+D

i

+ 1)�

i�1

X

n=1

B

n

(t+D

i

� s+ 1))

+

: (14)

According to Definition 6, we have

S

i

D

i

(t) = (C(t+D

i

)�

i�1

X

n=1

B

n

(t+D

i

))

+

: (15)

For the deterministic service envelope, the proof is similar. 2

Lemma 4 Consider an SP scheduler with N priority queues and link speedC. For each service class, traffic

is bounded byBi

(t) andbi(t), with QoS parameters(D
i

; P

i

), whereP i is the delay bound violation prob-

ability. The QoS for all service classes in this multi-service SP scheduler is satisfied if for all deterministic

service classes withP i

= 0,

max

t

fb

i

(t) +

i�1

X

n=1

b

n

(t+D

i

)� C(t+D

i

)g � 0

and for all statistical service classes withP i

> 0,

P [max

t

fB

i

(t) +

i�1

X

n=1

B

n

(t+D

i

)� C(t+D

i

)g > 0℄ � P

i

;

whereBn

(t+D

i

) is a random variable with the same distribution asBn

(t+D

i

), for n = 1; � � � ; i� 1:

Proof. For statistical service classes, according to Equation (14), we know that

e

Y

i

D

i

(s; t) = (C(t� s+D

i

+ 1)�

X

n

X

n

D

i

(s; t))

+

� C(t� s+D

i

+ 1)�

i�1

X

n=1

X

n

(s; t+D

i

):

SinceXn

(s; t+D

i

)�

st

B

n

(t+D

i

� s+1) for n = 1; � � � ; i� 1, by Lemma 1, there exist random variables

B

n

(t+D

i

� s+ 1), n = 1; � � � ; i� 1, such thatXn

(s; t+D

i

)�B

n

(t+D

i

� s+ 1), and so

e

Y

i

D

i

(s; t) � C(t� s+D

i

+ 1)�

i�1

X

n=1

B

n

(t+D

i

� s+ 1):

Thus, we can useC(t+D

i

)�

P

i�1

n=1

B

n

(t+D

i

) to replaceSi
D

i

(t) in Theorem 2. Furthermore,

B

i

(t)� [C(t+D

i

)�

i�1

X

n=1

B

n

(t+D

i

)℄ = B

i

(t) +

i�1

X

n=1

B

n

(t+D

i

)� C(t+D

i

); (16)
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and so, ifP [max

t

fB

i

(t)+

P

i�1

n=1

B

n

(t+D

i

)�C(t+D

i

)g > 0℄ � P

i

; then the statistical QoS requirement

of service classi is satisfied. For deterministic service classes, the proof is similar.2

Recentely, Shakkottai and Srikant have shown that the abovebound is asymptoticallyexactin a theoret-

ical study of SP schedulers in the many-sources regime [20].

Note that inter-class interference in an SP scheduler is in asingle direction, only from higher priority

classes to lower priority ones. Note also that this strict separation of sharing classes and isolation is described

by the service envelopes in Lemma 3. For EDF, we will see that every class affects every other class such

that the statistical service envelope for one class becomesa function of the traffic envelopes of all other

classes.

2.5 Earliest Deadline First

We now apply Theorems 1 and 2 to EDF schedulers by deriving EDF’s service envelopessi
D

i

(t) andSi
D

i

(t).

In an EDF scheduler, every classi is associated with a a delay bounddi.3 A classi packet arriving att is

assigned deadlinet+d

i, and the EDF service discipline always selects the packet with the smallest deadline

for service.

Lemma 5 In an EDF scheduler with classi traffic bounded byBi

(t) andbi(t), and EDF scheduler delay

bounddi, i = 1; 2; � � � ; N , the statistical service envelope for classi traffic is given by

S

i

D

i

(t) = (C(t+D

i

)�

X

n 6=i

B

n

(t� d

n

+ d

i

))

+

; (17)

and the deterministic service envelope for classi is

s

i

D

i

(t) = (C(t+D

i

)�

X

n 6=i

b

n

(t� d

j

+ d

i

))

+ (18)

whereBi

(t) andbi(t) are0 if t < 0.

Proof. Consider class-i arrivals att which have deadlinet + d

i. The essential trafficXn

D

i

(s; t) (n 6=

i) which is serviced before the class-i arrivals att contains only classn’s traffic arriving in the interval

[s; t+ d

i

� d

n

℄. Therefore, we have

X

n

D

i

(s; t) = X

n

(s; t+ d

i

� d

n

): (19)

As in the proof of Lemma 3, we haveC(t� s+D

i

+1) total services in[s; t+D

i

℄ so that the available

capacity to a minimally backlogged classi flow is4

e

Y

i

D

i

(s; t) = (C(t� s+D

i

+ 1)�

X

n 6=i

X

n

D

i

(s; t))

+

3We derive an expression for the entire delay distribution ofclassi, P [D

i

> D

i

℄ for all D
i

> 0. The point of most importance

is P [D

i

> d

i

℄, the probability of violating the class delay constraint, which we refer to asP i.
4Recall that the system is guaranteed to be backlogged duringthis entire interval when classi sends a minimally backlogging

input.
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= (C(t� s+D

i

+ 1)�

X

n 6=i

X

n

(s; t+ d

i

� d

n

))

+

�

st

(C(t� s+D

i

+ 1)�

X

n 6=i

B

n

(t+ d

i

� d

n

� s+ 1))

+

Thus, applying Definition 6, we have

S

i

D

i

(t) = (C(t+D

i

)�

X

n 6=i

B

n

(t� d

n

+ d

i

))

+

: (20)

Once again the proof is similar for the deterministic service envelope.2

We now derive a multi-class admission control test for EDF schedulers that support multiple determin-

istic and statistical service classes.

Lemma 6 In an EDF scheduler in which service classi has statistical traffic envelopeBi

(t) and delay

bounddi, the delay distribution of classi satisfies

P [D

i

> D

i

℄ � P [max

u�0

fB

i

(u) +

X

n 6=i

B

n

(u� d

n

+ d

i

)� C(u+D

i

)g > 0℄; 8D

i

2 [0;1); (21)

whereBn

(x) is a random variable with the same distribution asBn

(x), for n = 1; � � �, and anyx � 0.

Proof. Similar to the proof of Lemma 4, we have

e

Y

i

D

i

(s; t) � C(t� s+D

i

+ 1)�

X

n 6=i

B

n

(t+ d

i

� d

n

� s+ 1):

ReplacingSi
D

i

(u) by C(t � s +D

i

+ 1) �

P

n 6=i

B

n

(t+ d

i

� d

n

� s+ 1) and Applying Theorem 2 and

Lemma 5 we have

P [D

i

> D

i

℄ � P [max

u�0

fB

i

(u)� [C(u+D

i

)�

X

n 6=i

B

n

(u� d

n

+ d

i

)℄g > 0℄

= P [max

u�0

fB

i

(u) +

X

n 6=i

B

n

(u� d

n

+ d

i

)� C(u+D

i

)g > 0℄: 2 (22)

ForD
i

= d

i, Inequality (21) can be simplified as

P [D

i

> d

i

℄ � P [max

u�0

f

X

n

B

n

(u� d

n

)� C(u)g > 0℄ (23)

which is the delay-bound-violation probability of classi.

3 Inter-Services Resource Sharing in Link-Sharing GPS

In Section 2, we developed tools for managing multi-class services using statistical service envelopes, con-

sidering SP and EDF as specific examples. Here we study a link-sharing GPS server, again using the

framework of statistical service envelopes, with a goal of increasing the total utilization of the multi-class

GPS server by exploiting inter-class resource sharing.
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Figure 2: System Model for Admission Control

3.1 Generalized Processor Sharing

Figure 2 shows the system model for admission control in a multi-class GPS scheduler (see [7] for example).

There areN service classes in the system, each allocated a weight�

i. Each service class provides either

deterministic, statistical, measurement-based, or best-effort services.5 The admission control algorithm

should admit a new flow only if the QoS of all classes can be satisfied. This multi-class service model can

also support flow-based services, in which some service classes serve only one flow. Without considering

inter-class resource sharing, one could view each service class as a FCFS server with capacityg

i, which is the

guaranteed service rategi = �

i

P

m

�

m

C; as defined by the GPS service discipline. However, while exploiting

this isolation property of GPS simplifies admission control, it does not corporate potential utilization gains

due to inter-class statistical sharing.

C

Session 1

Session 2

Session N

X (t)

X (t)

X (t)

Q (t)

Q (t)

Y (t)

Y (t)

Y (t)

N

N

N

2
2

1

1

1

2

Q (t)

Figure 3: GPS System

Figure 3 illustrates the GPS system in the view of inputs, outputs and buffers. The aggregate traffic in

each class is viewed as a session, and the notation for inputs, outputs and queues are as defined in Section 2.

For1 � i � N , let Y i

(s; t) be the amount of classi traffic served during[s; t℄. By definition of GPS,

Y

i

(s; t)

Y

m

(s; t)

�

�

i

�

m

;m = 1; 2; : : : ; N (24)

5Here, we study multiple deterministic and statistical service classes and leave study of measurement-based service tofuture

work.
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for any classi backlogged during[s; t℄. Since each class has a guaranteed rateg

i whenever it is backlogged,

the deterministic service envelope of classi is si
D

i

(t) = g

i

(t+D

i

):

3.2 Statistical Service Envelopes in GPS

In order to fully exploit inter-class resource sharing, we devise a technique for partitioning service classes.

First, we illustrate an isolation/sharing model for admission control in Figure 4. In this model, some service

classes will use their deterministic service envelope in admission control. These service classes may support

deterministic services, in which deterministic traffic envelopes are used. Or they may support less aggres-

sive statistical services which do not wish to exploit sparecapacity from other classes. In view of service

envelopes, we refer to these service classes asisolation classes (denoted asI). Apart from these isolation

classes, other service classes will exploit inter-class resource sharing using their statistical service envelope

to admit an increased number of flows into the traffic class. Werefer to these service classes assharing

classes (denoted asS). Sharing classes cannot support deterministic services,but can support statistical,

measurement-based, and best-effort services.

Sharing

Det. Sta. MBAC ...

...
s (t)1

...
S (t)
i

s(t)2

Sta. MBAC

F
lo

w
s

C
la

ss
es

...

Link

Best-Effort

Isolation

Figure 4: An Isolation/Sharing Model for Admission Control

Below, we derive an expression for the statistical service envelopes of sharing classes, which with ap-

plication of Theorem 2 provides a multi-class admission control test which incorporates inter-class resource

sharing.

Lemma 7 In a GPS scheduler with classi traffic bounded byBi

(t) andbi(t), the statistical service envelope

for sharing classi is given by

S

i

D

i

(t) =

�

i

P

m2S

�

m

[C(t+D

i

)�

X

n2I

B

n

(t+D

i

)℄: (25)

Proof. Consider class-i arrivals (i 2 S) at t which have deadlinet + D

i

. The the essential traffic

X

n

D

i

(s; t) (n 2 I) which gets serviced before the class-i traffic arriving att contains at most class-n traffic

arriving in the interval[s; t+D

i

℄. That is,

X

n

D

i

(s; t) � X

n

(s; t+D

i

): (26)

13



Notice that for isolation classes such as those obtaining a deterministic service, this bound is quite tight, as

such classes incur little or no queueing delays.

With the total capacity available in the interval[s; t + D

i

℄ given byC(t � s + D

i

+ 1), according to

Lemma 1 and similar to the proof of Lemma 4, the capacity forall sharing classes is given by

e

Y

S

D

i

(s; t) = (C(t� s+D

i

+ 1)�

X

n2I

X

n

D

i

(s; t))

+

� (C(t� s+D

i

+ 1)�

X

n2I

X

n

(s; t+D

i

))

+

�

st

(C(t� s+D

i

+ 1)�

X

n2I

B

n

(t+D

i

� s+ 1))

+

:

(27)

For a particular classi 2 S, the GPS scheduler distributes this available service in a weighted-fair

manner among classes. Thus, using Equation (24) and Definition 6, the statistical service envelope is given

by

S

i

D

i

(t) =

�

i

P

m2S

�

m

[C(t+D

i

)�

X

n2I

B

n

(t+D

i

)℄: 2 (28)

We conclude by describing the complete admission control algorithm for a multi-class GPS server. Each

class provides traffic parametersbi(t) andBi

(t), and QoS parametersD
i

andP i. Each class has a weight

�

i and guaranteed rategi, with guaranteed service envelopesi
D

i

(t) = g

i

(t+D

i

). For deterministic service

classes, ifmax

t

fb

i

(t) � s

i

D

i

(t)g � 0; then the deterministic QoS for flows inside classi is guaranteed.

For isolation statistical service classes, ifP [max

t

fB

i

(t) � s

i

D

i

(t)g � 0℄ � P

i

; then the statistical QoS of

classi is satisfied. Forsharingstatistical service classes, the statistical QoS is satisfied if P [max

t

fB

i

(t)�

s

i

D

i

(t)g � 0℄ � P

i

; or if P [max

t

fB

i

(t) � S

i

D

i

(t)g � 0℄ � P

i exists for a statistical service envelope

S

i

D

i

(t).

4 Computational and Experimental Investigation

In Sections 2 and 3, we studied the delay bound violation probability using statistical traffic and service

envelopes for SP, EDF, and GPS schedulers. In this section, we address the computational aspects of these

admission control algorithms and perform trace-driven simulations to quantify the ability of our approach to

exploit inter-class resource sharing. The workload consists of a set of 30-minute traces of MPEG compressed

video from [18].

4.1 Computing the Delay Tail Probability

The admission control tests of Sections 2 and 3 are expressedas sums of independent random variables

(from arrivals of different flows) with temporal correlation within each flow. As the expression for the

queue length distribution of a FCFS takes a similar functional form [13], we can apply previous queueing

theoretic techniques in computing probabilities such as those in Equation (23). Possible techniques include

include large deviations theory and maximum-variance approaches and others reviewed in [13]. Here, we
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apply the maximum-variance technique of [4] due to its computational simplicity and experimental accuracy

when multiplexing a large number of sources. Regardless, ifhigher moments than the first and second of

the traffic envelopes are available, the results below can berefined using large deviations techniques using

an approach such as [3].

To approximate each flow’s traffic descriptorB
j

(t), we use the rate variance envelopesRV

j

(t) and mean

ratem
j

, i.e.,EfB
j

(t)g = m

j

t and varfB
j

(t)g = t

2

RV

j

(t). The details of computation forRV
j

(t) and

m

j

are given in [11]. When flows are multiplexed, the aggregate traffic envelope for classi approaches

a Gaussian envelope withBi

(t) having mean
P

j2C

i

tm

j

, and variance
P

j2C

i

t

2

RV

j

(t) [11]. In practice,

traffic flows can specify policing parameters, and use [12] tocompute such statistical traffic envelopes from

the deterministic parameters, e.g., standard dual leaky bucket traffic descriptors can be applied.6

To calculateP [max

t

fB

i

(t)� S

i

D

i

(t)g > 0℄ in Equation (7) we utilize the maximum variance approach

of [4] which computes the normalized excess arrivals at the dominant time scale as

�

2

t

= varfBi

(t)� S

i

D

i

(t)g = varfBi

(t)� S

i

D

i

(t)g;

�

t

=

0�EfB

i

(t)� S

i

D

i

(t)g

�

t

=

0�EfB

i

(t)� S

i

D

i

(t)g

�

t

;

� := inf

t

�

t

: (29)

ApproximatingfBi

(t)� S

i

D

i

(t)g as Gaussian, under conditions (C1)-(C2) in [4],

P [max

t

fB

i

(t)� S

i

D

i

(t)g > 0℄ � max

t

P [B

i

(t)� S

i

D

i

(t) > 0℄ = max

t

P [B

i

(t)� S

i

D

i

(t) > 0℄ = �(�)

and

P [max

t

fB

i

(t)� S

i

D

i

(t)g > 0℄ � e

�

�

2

2 (30)

where�(�) =

1

p

2�

R

1

�

e

�

x

2

2

dx. Roughly, the lower bound replaces the probability of the maximum with

the maximum probability, and the upper bound uses the dominant time scale, the value oft minimizing

Equation (29), to derive the exponential asymptotic upper bound of Equation (30). Proofs of these two

bounds are given in [4], and we utilize both in the experiments below.

4.2 Admissible Regions in Multi-Class GPS

The scenario we consider is a link sharing GPS server with a total capacity of45 Mbps. Different weights�i

are given to different classes, which require either deterministic or statistical services. In the experiments,

some classes will exploit inter-class resource sharing, while others will not.

In general, the benefits of inter-class resource sharing increase with the number of classes, as in the limit

of one flow per class, a system without inter-class sharing behaves as a deterministic service. In these first

experiments, we consider two classes to obtain insights into theminimumperformance gains of inter-class

sharing.
6The particular traffic model chosen and the method by which users obtain their traffic parameters is addressed in [13] and

elsewhere and is beyond the scope of this work.
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In each experiment, we calculate the admissible region for each class according to the flows’ traffic

characterizations and QoS requirements using the admission control algorithm described in Section 3. For

example, in the first experiment, we let�1 vary from 0 to 1 and�2 = 1 � �

1. The maximum admissible

numbers of flows in each service class are evaluated for different weight assignment(�1; �2). The admis-

sible region for each class is the area in two dimensional space bounded by the curve determined by these

maximum admissible numbers of flows. We then perform trace-driven simulations using a GPS scheduler

with each flow having a randomly shifted initial phase. Many simulations are run for each combination of

numbers of class one and class two flows and the average delay bound violation probability is measured.

The maximum numbers of class one and class two flows subject tothis measured QoS constraint is then the

experimental admissible region.

In the first experiment, we consider a GPS server with two service classes. Class 1 requires deterministic

service, withD
1

= 10 msec, class 2 requires statistical service, withD

2

= 20 msec andP 2

= 10

�4. In

the admission control tests, we use both the lower bound of Equation (30) and the upper bound of Equation

(30) to approximate the deadline violation probability.
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Figure 5: Admissible Regions for Deterministic and Statistical Services

Figure 5 shows the admissible regions for class 1 and 2 under four different conditions: with and without

inter-class sharing for class 2, and upper and lower bounds for the deadline violation probability. Notice

the significant increase in the admissible region due to exploiting inter-class resource sharing using our

framework of statistical service envelopes. For example, using the lower bound and settingg1 = g

2

=

C=2, i.e., �
1

= �

2

, without inter-class sharing, the admissible region is(0 � class 1 flows� 7; 0 �

class 2 flows� 31) and the total utilization is45:3%. In contrast, with inter-class sharing, the admissible

region is(0 � class 1 flows� 7; 0 � class 2 flows� 62) and the total utilization is82:2%, an increase

of 81%. We also observe that the differences in the admissible regions using the lower and upper bounds

are merely 1 or 2 flows. We next perform trace-driven simulations and measure the experimental delay

bound violation rates using the admissible region calculated from the “sharing” tests. For the lower bound,

the mean delay bound violation probability for class 2 is5 � 10

�4, while for the upper bound, the mean

violation probability for class 2 is approximately5 � 10

�5. Since the QoS parameter isP 2

= 10

�4, we

observe that the actual admissible region boundary must be between the LB and UB sharing curves, and that

the admissible regions calculated using both bounds are very close to the true ones.
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Figure 6: Admissible Regions for a Three-Class GPS Server

In the next experiment, we consider a three-class GPS scheduler. Class 1 requires deterministic service

with D

1

= 20 msec, class 2 requires statistical service withD

2

= 20 msec andP 2

= 10

�4, and class 3

requires statistical service withD
3

= 30 msec andP 3

= 10

�4. Class 1 and 2 are isolation classes. We

perform admission tests with and without class 3 exploitinginter-class sharing, and use the lower bound of

Equation (30) to approximate the deadline violation probability. The admissible region is shown in Figure 6,

which also illustrates the significant utilization gain of the approach.
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Figure 7: Increase in Admissible Regions for 3 Statistical Classes

In the above two experiments, the deterministic service class is exploited by the statistical service class

to allow inter-class sharing. In the next experiment, we show that our approach is also able to exploit

inter-class sharing among statistical service classes. Weconsider a three class GPS server with each class

providing statistical services with the same QoS:D = 20 msec andP = 10

�4. Class 1 and 2 are set to

isolation classes. In Figure 7, we show the difference in theadmissible regions by allowing class 3 to exploit
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inter-class sharing.

From Figure 7, observe that ignoring inter-class sharing leads to as many as 8 fewer flows admitted in

class 3, for a loss of approximately10% of the resource utilization. In this scenario, the intra-class statistics

are fully exploited, and the gain comes solely from the inter-class statistics. In a high-speed GPS server,

even if each class provides statistical service, when the number of service classes is large, the inter-class

resource sharing gain can be significant.

5 Conclusions

In this paper, we developed multi-class admission control algorithms that exploit inter-class statistical re-

source sharing. We developed a framework of statistical service envelopes to study the problem and showed

how such envelopes characterize the excess capacity available to a traffic class due to varying resource de-

mands of other classes. We applied the approach to Strict Priority, Earliest Deadline First, and Generalized

Processor Sharing schedulers and experimentally demonstrated that our admission control algorithms are

able to extract a significant utilization gain from inter-class resource sharing.
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