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Abstract

Networks that support multiple services through “link-8hg” must address the fundamental con-
flicting requirement betweeisolation among service classes to satisfy each class’ quality oficerv
requirements, and statisticgtaringof resources for efficient network utilization. While a nuenlof
service disciplines have been devised which provide masimanto both isolate flows and fairly share
excess capacity, admission control algorithms are neetedhwexploit the effects of inter-class resource
sharing. In this paper, we develop a framework of usitagistical service envelopés study inter-class
statistical resource sharing. We show how this servicelepeesnables a class to over-book resources
beyond its deterministically guaranteed capacity by stiatilly characterizing the excess service avail-
able due to fluctuating demands of other service classes pylg aur techniques to several multi-class
schedulers, including Generalized Processor Sharinggdasign new admission control algorithms for
multi-class link-sharing environments. We quantify thiizdtion gains of our approach with a set of
experiments using long traces of compressed video.

1 Introduction

Future integrated services networks will support hetemegas Quality of Service (QoS) specifications
and traffic demands. For example, a deterministic servitgUy8es worst-case resource allocation to sup-
port applications requiring packet delivery without lasse delay bound violations; a statistical service
[14] achieves a statistical multiplexing gain and provide&tistical QoS guarantees with controlled “over-
booking” of resources; a measurement-based service [ppjosts QoS by basing admission control deci-
sions on empirical observations of aggregate traffic benabiest-effort services support applications with
less stringent QoS requirements such as bulk data transfién. appropriate admission control and traffic
scheduling, these services and others can co-exist in ke siegvork, as admission control limits the num-
ber of admitted traffic flows to ensure that each class’ Qo%irempents are met, and packet schedulers
ensure that packets are assigned the priority levels ndededet their QoS objectives.

In alink sharing environment as outlined in [7], traffic d&ds allocated capacity, such that whenever
packets from clasg are backlogged, the class receives service at a rate ofstdealf classk is not
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backlogged, then clagss unused capacity is distributed fairly among backloggess®mns. Consequently,
classes can be assured to meet their respective QoS requiemegardless of the behavior of other traffic
classes, allowing any number of services to co-exist in dievork.

In the literature, a number of service disciplines have k#esigned to support such link sharing ob-
jectives [7, 2]. For example, [2] develops a class of Hidmeal Packet Fair Queueing algorithms focusing
on an algorithm’s fairness, complexity, and ability to poesvlow end-to-end deterministic delay bounds.
While scheduling algorithms for efficiently and fairly adlating excess capacity to backlogged classes are
an important aspect of a link-sharing network, an admissantrol policy that enables one class of traffic
to quantify the improved QoS it will receive due to capacityised by other classes has not been addressed.

In addition to service disciplines, a number of admissiamtie® algorithms have also been designed both
for deterministic services which do not exploit statidtiesource sharing [5, 17], as well as statistical [14,
4, 6, 11, 22] and measurement-based services [10] which daeter, such admission control algorithms
consider traffic classes in isolation, and while a stat$tioultiplexing gain is achievedithin a particular
traffic class,inter-classresource sharing is not addressed. In particular, [6, 2@]ysstatistical service for
Generalized Processor Sharing (GPS) [17], and while tldgtion” property of GPS is exploited for multi-
node analysis, inter-class statistical resource shadnmpi addressed. Moreover, while several previous
studies do consider inter-class sharing from the persfeofischeduling [8, 9] or video transmission [1],
general inter-class link sharing environments have nat laeelressed.

In this paper, we address the problem of inter-class dtatistesource sharing. Our contribution is
to develop a theoretical framework for inter-class reseigicaring, and to derive admission control algo-
rithms for several important schedulers. Our key technigue develop a framework dftatistical service
envelopego study the problem. Inspired by [5], we define a statistsgakice envelope as a probabilistic
description of the service available to a traffic class asatfan of interval length. We use this service enve-
lope to characterize the additional capacity availablettaféic class beyond the minimum deterministically
guaranteed capacity set aside by the link sharing ruleshisnatay, we statistically capture the fluctuating
excess capacity left unused by one traffic class so that anothss may exploit an inter-class statistical
multiplexing gain and potentially admit additional traffiows that would not otherwise have been deemed
admissible. Thus, we use the statistical service envelspetaol for overbooking inter-class resources in a
controlled manner, so that a class can probabilisticallntjfy the additional resources available in a link
sharing environment.

We apply this framework of statistical service envelopethtee multi-class service disciplines, namely,
Strict Priority (SP), Earliest Deadline First (EDF), andklisharing GPS [7, 2]. We show that while the
concept of a statistical service envelope was implicitigdig previous studies of SP [11], explicitly com-
puting the service envelope of other traffic classes prevalsimpler analysis and allows us to uniformly
treat deterministic and statistical service classes.

For GPS, we conceptually partition traffic classes istwation classes angharingclasses depending
on whether or not the traffic class will exploit the effectsraér-class resource sharing in making admission
control decisions. For example, a deterministic servicanissolation class as excess capacity from other
traffic classes is not guaranteed in the worst case and hestatisical envelope of excess capacity cannot



improve this class’ admissible region. We then bound thal s#rvice received by all sharing classes and
show how the weighted fairness property of GPS can then lzbtagterive each class’ service envelope. In
this way, admission control for eadharing class can characterize the capacity available beyond és gu
anteed rate, incorporating the relative weights and trdfimands of all other traffic classes, and improving
the class’ admissible region.

We illustrate the potential utilization gains of our intdass resource sharing scheme with a set of trace-
driven simulation experiments using long traces of MPE@GHaessed video. As an illustrative example
with a 45 Mbps link supporting equally weighted determigistind statistical service classes with the GPS
service discipline, we find that the average utilizationhaf link can be improved from 47.7% to 84.6% by
using the statistical service envelope to characterizexbess capacity of the deterministic class.

2 Statistical Service Envelopes: Theory and Applications

In this section, we define statistical service envelopesdavelop their applications to inter-class resource
sharing. In particular, we first study the delay distribotfor a single class using statistical traffic envelopes
and deterministic service envelopes. Next, we extend tiasyais to include statistical traffic envelopes and
statisticalservice envelopes. Finally, we illustrate the applicatibatatistical service envelopes by deriving
admission control tests for SP and EDF schedulers usinghbay.

2.1 Multi-Class Queueing Concepts

Here, we introduce two key concepts for inter-class resogharing. First, we define essential traffic: for a
particular class:, this refers to the total clags+traffic that must be serviced in order for clas® meet its
delay constraints. The second concept is available sericharacterization of the capacity available to a
class as a function of interval length.

Throughout this paper, we model a multiplexer by a disctiete- infinite buffer queue in which fluid
flows into and out of the buffer only at discrete time slotsr faffic classi, let X*(¢) denote its aggre-
gate arrivals in time slot, and letX*(s,¢) denote the total arrivals in time intervgl, ¢], i.e., X*(s,t) =
St X*(h). Without loss of generality, we assume thgt(-, ), i = 1,2, - -, are independent. L&f’(t)
represent the amount of fluid served for traffic clags time slot¢, and denot& (s, ¢) as the total fluid
served in time intervals, t], i.e.,Y(s, t) = 3.5 _, Yi(h).

DenotingQ®(t) as the backlog of clagsat the end of time slat, Q*(¢) is given by

Q'(t) = max{X'(s,t) = Y'(s, 1)} (1)
s_
Classi is said to be continually backlogged in the interjglt] if Q?(h) > 0,V h € [s, ].
Definition 1 (Essential Traffic) The essential traffic of clagswith respect to classis defined as

XD, (s,t) = X"(s,t + Dy) N Y™ (s,t + D;) (2)



The essential traffic has an important interpretation: egpfa class{packet arrives at timeand is serviced
exactly at its delay bount+ D;. Then X7, (s,t) is the classs traffic which will be serviced before the
class¢ packet. As we will show below, the essential traffic is a fiorcbf the particular service discipline,
and plays a key role in characterizing inter-class resosineging.

Definition 2 (Available Service) Let X‘i(s, t) denote the minimal classinput such that class is contin-
uously backlogged ifs, t]. The available service of clagsin [s,¢ + D;] is defined as the classoutput
f’lgi(s,t) given this minimally backlogging input traﬁiEi(s,t), and other classes’ input traffic as their
essential trafficX7 (s, ), n # i.

Note that the available servidNé]gi(s,t) is a function of the scheduling mechanism and the essential
traffic X7 (s,?), n # i. Notice further thaf/f,i(s,t) is independent of the input traffic of clagswhereas
the actual output procesd (s, t + D;) is decided byall classes’ inputs. By using this notion of available
service, we decouple clags input traffic X(s, ) from its availabe servic&?, (s,t), makingY}, (s,t) a
pure description of available network resources, sep&mate the traffic that is actually sent.

We next review several facts about stochastic ordetitigit are used later in this section.

Lemmal LetX;,: = 1,---,n, be independent random variables with distributigrig-) ,7i = 1,---,n,
respectively and; , i = 1,---, n, be independent random variables with distributidi$-), i = 1,---,n,
respectively, itX; <, Y; fori =1,---,n, then

1. Z?:l Xiést Z?:l Y;
2. f(X1)<gf(Y7) for any increasing functiory.
3. c— Y, Xi>gce— Y i, Y, for any real variablec.

4.Y; = F; Y(Gi(X;)), i = 1,---,n, are independent random variables with distributiafig:) , i =
1,---,n, respectively and(; < Y;fori=1,---,n.

Proof: See [19] for detail. O

2.2 Statistical Service with Deterministic Service Envelpes

Deterministic service is studied in [5] using determimistervice envelopes and deterministic traffic en-
velopes. Here, we first study statistical service vethtistical traffic envelopes andeterministicservice
envelopes, and later focus statisticalservice envelopes. First, we formally define both deterstimand
statistical traffic envelopes and deterministic serviceetapes.

Definition 3 (Deterministic Service Envelope)A non-decreasing non-negative functiﬁﬂ (t) is a deter-
ministic service envelope of traffic classf for any backlogged intervdk + 1, u + ¢, the available service
satisfie$

Y (u+1,u+1t) > sh.(t).

Throughout,X <,,Y (stochastic inequality) denotd¥X > z] < P[Y > 2| for all z.
2Throughout,Y > X denotes almost sure inequali[y’ > X] = 1.
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To illustrate the concept of a deterministic service envelamote that for a GPS server, a service class with
guaranteed rat¢/, satisfiest}, (u + 1,u +1t) > s, (t) = g'(t + D;).

Definition 4 (Deterministic Traffic Envelope) [15] A non-decreasing non-negative functitiit) is a de-
terministic traffic envelope of clagsif for any interval{u + 1, u + ¢], the input traffic satisfies

X'(u+1,u+1t) <b(t).

Definition 5 (Statistical Traffic Envelope) A sequence of random variabld$'(¢) is a statistical traffic
envelope of class if for any interval[u + 1, u + t], the input traffic satisfies

X'(u+1,u+ )<y B'(t).

In other wordsp'(t) describes the maximum classurivals in any interval of length, whereasB®(t)
describes the distribution of arrivals in intervals of ldng. Without loss of generality, we assume that
Xi(.,-) andX/(-,-) are independent anl’(-) and B/ (-) are independent if # ;.

DenotingD? as the virtual delay experienced by a bit of claasriving at time slot, the key QoS metric
that we consider is the probability of (virtual) delay boundlation, P[D} > D;]. As long as

_ EXU(L,t) . sih(b)
1m —— 1nm ———————
t—o0 t t— o0 (t + Dz)

(the stability condition), and((¢) is stationary and ergodid?[D} > D;] converges to a steady state tail
probability P[D* > D;] [16].

Bits A

Time
Figure 1: Delay and Buffer Occupancy

Figure 1 shows the delay and buffer occupancy of classerms of X*(1,¢) andY (1, ) if the buffer
is initially empty. The delayD} of a class: arrival att is defined as [5]

Di =min{A: A >0andX*(1,t) <Y'(1,t+A)}. (3)



Lemma 2 For a delay boundD;, the event of delay bound violation of clasat time slott satisfies

{Dj>Di} < {max{X'(s,t) = Yh,(s,6)} > 0}. (@)
Proof. By definition
{D{>Di} = {X'(1,¢) = Y'(1,t + D;) > 0}

N

{mggc{Xi(s,t) —Y'(s,t + D;)} > 0}.
S_
Observe that ifnax,<{X'(s,t) — Y(s,t + D;)} > 0, thenmax,<{X'(s,t) — Y}, (s,£)} > 0. This
is because ifnax, < {X*(s,t) — Y'(s,t + D;)} > 0, there must exist an
s* = max{s: s < tandQ'(s) = 0}

such that

mggc{Xi(s,t) —YUs,t +Dy)} = X'(s* +1,t) = Y'(s* + 1,t + D;),

s_

and[s* + 1,¢ + D;] is a backlogged interval. Furthermore, sifiég (s* + 1,¢) is the available service in
[s* +1,t + D;], we have
Yh (s + L) <Y (s* + 1, ¢ + Dy),

so that
{max{X7(s,t) = Y"(s,+ D)} > 0} < {max{X'(s, ) = ¥}, (s,0)} > 0}.

Thus
{D} > Di} C {max{X(s,t) — Y}, (5,1)} > 0}. 0
s_
Theorem 1 For service class with deterministic service envelop%i (t) and statistical traffic envelope
B'(t), the probability of class-delay bound violation satisfies:

P[D! > D;] < P[rggac{Bi(u) — s (u)} > 0], VD; € [0,00), (5)

whereBi(u) is a rondom variable with the same distribution B$(u).
Proof. From Lemma 2,

P[D} > Di] < Plmax{X"(u,t) = Y}, (u, 1)} > 0]. ®)
Since X(u,t)<,B'(t — u + 1) , by Lemma 1, there exists a random varialblgt — u + 1) with the

same distribution a$3*(t — u + 1) such thatX(u,t)<Bi(t —u + 1). Furthermore, by Definition 3,
Y}, (u,t)>sh, (t —u+1). Thus, we have

{max{X"(u,t) = Vp,(u,)} > 0} € {max{B(u) s, (u)} > 0}.
Finally, we have
Pliax{X'(u,t) = Yp,(u,)} > 0] < Plnax{B(u) = sp, ()} >0}. O

Thus, the theorem provides a general multi-class statlddielay bound using the lower bound of a classes’
available service?, (t).



2.3 Statistical Service with Statistical Service Envelope

Theorem 1 enables us to exploit the statistical multiplgxdain of flows within a service class. This result
is quite general and as we show below can be applied to a wéds df schedulers. However, while the
deterministic service envelops%i (t) provides isolation among service classes and simplifiesissiton
control, it precludes statistical inter-class resourcarigly. In multi-class schedulers such as SP, EDF, and
GPS, the utilization gains available from exploiting intdsiss resource sharing can be significant. Next, we
introduce a statistical service envelope to study the-cleess resource sharing problem, and develop new
theory to calculate the delay bound violation probabiligyng statistical service envelopes.

In a multi-class server, the available service for clas%‘gi (u,t), is a function of the input traffic in
other classes and the particular service discipline whpelsifies how to schedule services among competing
classes. The interference among classes is reflectiffgi(m,t), and in some cases, it is possible that the
available service is far greater than the minimally guaredtservice, i.e.ffgi (u,t) > Slbi (t —u+1).
Thus we define a statistical service envelope as a way to cieare the available service beyond the
deterministically guaranteed, (t).

Definition 6 (Statistical Service Envelope)A sequence of random variablé“%i (t) is a statistical service
envelope of clasés traffic, if for any intervallu + 1, u + t], the available servicé?gi (u+1,u+t) satisfies

Y, (u+1,u+1)>4Sh, (1).

Notice that while a deterministic service envelcség(t) describes the service of a class in isolation, the
statistical service envelopﬁ}')i (t) describes inter-class resource sharing. We emS@(t) in the delay
distribution calculation with the following theorem.

Theorem 2 For service class with statistical service envelop#, () and statistical traffic envelops’(t),
the probability of class-delay bound violation satisfies:

PID; > Dj] < Plmax{B'(u) — Sp, (u)} > 0], YD; € [0,00), )

whereB’(u) and S}')i (u) have the same distribution &' (u) and S}')i (u) respectively.
Proof. From Equation (6),

PID; > Di] < Plmax{X"(u,t) = Y}, (u, 1)} > 0]. ®8)

SinceX(u, )<y Bi(t—u+1) andY}, (u,t)>Sh (t—u+1), by Lemma 1, there exist random variables
Bi(t —u+ 1) andS}, (t — u + 1) with the same distribution a8’ (¢t —u+1) ands}, (t—u-+1) respectively

such that\ (u, ) <B(t —u + 1) andY}, (u,t) > Sh, (t —u+ 1).
Thus, we have

P[rilgz({Xi(u, t) = Yh (u,t)} > 0] < Plmax{B(t —u+1) = §p,(t —u+1)} > 0]
< Plmax{B'(u) — S, (u)} > 0]. ©)
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Thus

P[D! > D;] < Plmax{B'(u) = S, (u)} >0]. O (10)

Notice that the theorem applies to any traffic charactedmaB(-) and any inter-class relationshff{-).
As we show below,S(-) is determined by the particular service discipline, as ithis service discipline
which determines the manner in which multiple classesaatgwith weighted fairness, strict priority, etc.)
and hence the extent to which classes are strictly isolateshare system resources. Below we employ
Theorem 2 and our framework of statistical service enveldpedevise admission control algorithms for
multi-class servers. In this way, admission control carlakthe available inter-class statistical resource
sharing that is provided by the scheduler.

2.4 Strict Priority

Admission control for strict priority schedulers was stdlin [15] for deterministic service. In [11], approx-
imate tests were developed for statistical service. Heesapproach the problem using service envelopes
and obtain a general and accurate multi-class admissianotoest which supports multiple deterministic
and statistical service classes.

Lemma 3 Consider an SP scheduler with N priority queues, link spéednd the aggregate traffic in class
i bounded byB*(t) and b(t), withi = 1,..., N denoting the priority level from higher priority to lower
priority. The statistical service envelope for classith delay boundD; is

i—1

SD (t) = (C(t+ Dy) Z B™(t+ D;))" (11)

n=1

and the deterministic service envelope for clais
s, (t) = (C(t + D;) Z b (t + D;) (12)

whereb'(t) = 3;b4(t), B'(t) = X; Bi(t), and b(t) and Bl(t) are the respective deterministic and
statistical envelopes of floyvin class:.

Proof. Consider classarrivals att which have deadline+ D;. Under strict priority, the essential traffic
for higher priority classes consists of all traffic arrivittgoughout s, ¢ + D;], whereas lower priority classes
have no effect on clagsand hence have no essential traffic. Thus, we have

X"(s,t+D;) n<i

13
0 n>i. (13)

XD, (s,t) = {

Furthermore, since the total available service in the vate}s,t + D;] is C(t — s + D; + 1) and
X"(s,t+D;),n=1,2,---,i—1, are independent ankl” (s, t + D;)<,B"(t+ D; — s+ 1), by Lemma 1,



the remaining capacity available to a minimally backloggksst flow is given by

Yh(s,t) = (Ct—s+Di+1)— > Xp(s,t)"
i—1
= (Ct—s+Di+1)= > X"(s,t+Dy))"
n=1
i—1
> (C(t—s+Dij+1) =Y B"t+D;j—s+1)*". (14)
n=1
According to Definition 6, we have
i—1
Sh,(t) = (C(t+ D)= B"(t+D;))". (15)
n=1

For the deterministic service envelope, the proof is simila

Lemma 4 Consider an SP scheduler with N priority queues and link ggeeFor each service class, traffic
is bounded by3¢(t) and b’ (t), with QoS parameter&D;, P*), where P! is the delay bound violation prob-
ability. The QoS for all service classes in this multi-seevEP scheduler is satisfied if for all deterministic
service classes witR* = 0,
' i—1
max{b'(t) + Y 0" (t + Dy) — C(t + Di)} <0

n=1
and for all statistical service classes wiftf > 0,

i—1
P[mtax{Bi—(t) +Y Bt+D;)—C(t+D;)} > 0] < P,

n=1

whereB"(t + D;) is a random variable with the same distribution B8 (¢ + D;), forn =1,---,i — 1.

Proof. For statistical service classes, according to Eo#14), we know that

Yh(s,t) = (Clt—s+Di+1) =Y Xp(s,t)"
i—1

> C(t—s+Di+1) = > X"(s,t+ Dy).
n=1

SinceX" (s, t+ D;)<u@B"(t+D; —s+1)forn=1,---,i—1, by Lemma 1, there exist random variables
B"(t+D;—s+1),n=1,---,i— 1, such that\"(s,t + D;)<B"(t + D; — s + 1), and so

i—1
Yh(s,t) > Clt—s+Di+1)—> B*(t+D;—s+1).

n=1

Thus, we can us€'(t + D;) — Y\ 1 Bn(t + D;) to replaceSy, (t) in Theorem 2. Furthermore,
i—1 i—1
Bi(t) - [C(t+Di) = Y_ B (t+D;)] = B'(t)+ Y B'(t+D;)—C(t+ Dy, (16)

n=1 n=1




and so, ifP[max,{ B(t) +Y.%_}, Bn(t + D;)—C(t+D;)} > 0] < P*, then the statistical QoS requirement
of service class is satisfied. For deterministic service classes, the psosinilar. O

Recentely, Shakkottai and Srikant have shown that the abawed is asymptoticallgxactin a theoret-
ical study of SP schedulers in the many-sources regime [20].

Note that inter-class interference in an SP scheduler issingle direction, only from higher priority
classes to lower priority ones. Note also that this stripas&tion of sharing classes and isolation is described
by the service envelopes in Lemma 3. For EDF, we will see thattyeclass affects every other class such
that the statistical service envelope for one class becarfasction of the traffic envelopes of all other
classes.

2.5 Earliest Deadline First

We now apply Theorems 1 and 2 to EDF schedulers by deriving&g#fvice envelopesbi (t) andS},i (t).

In an EDF scheduler, every clasts associated with a a delay boudc A classi packet arriving at is
assigned deadline+ d*, and the EDF service discipline always selects the packéttt smallest deadline
for service.

Lemma 5 In an EDF scheduler with classtraffic bounded byB(t) andb'(t), and EDF scheduler delay

boundd’, i = 1,2,---, N, the statistical service envelope for clagsaffic is given by
Sp,(t) = (C(t+D;) = > B"(t—d" +d))*, 17)
n#£i

and the deterministic service envelope for class

sh,(t) = (C(t+ D;) = > b"(t — & +d')* (18)
n#£i

whereB*(t) andb'(t) are 0 if t < 0.

Proof. Consider classarrivals att which have deadling + d’. The essential traffic(y (s,t) (n #
i) which is serviced before the classrrivals att contains only class’s traffic arriving in the interval
[s,t + d* — d"]. Therefore, we have

XP.(s,t) = X" (s, t +d' —d"). (19)

As in the proof of Lemma 3, we havg(t — s + D; + 1) total services ins, t + D;] so that the available
capacity to a minimally backlogged clasfiow is*

Yh(s,t) = (Clt—s+Di+1)—> Xp(s8)"
3We derive an expression for the entire delay distributioola$si, P[D* > D;] for all D; > 0. The point of most importance

is P[D* > d'], the probability of violating the class delay constrainkieh we refer to ag*.
“Recall that the system is guaranteed to be backlogged dthimgntire interval when clagssends a minimally backlogging
input.
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= (Clt—s+Di+1)=> X"(s,t+d" —d")"

>q (Clt—s+Di+1) =S B (t+d —d"—s+ 1)
n#£i
Thus, applying Definition 6, we have
Sh,(t) = (C(t+ D;) = > Bt —d" +d'))*. (20)

Once again the proof is similar for the deterministic sendavelope.O
We now derive a multi-class admission control test for EDiresltlers that support multiple determin-
istic and statistical service classes.

Lemma 6 In an EDF scheduler in which service clashas statistical traffic envelop®’(¢) and delay
boundd’, the delay distribution of classsatisfies

P[D' > D;] < P[Iggg{{Bi(u) + ZB”(U —d"+d') - C(u+D;)} >0], VD;€[0,0), (21)
= n#£i

whereB"(x) is a random variable with the same distribution 88(z), forn =1, - - -, and anyz > 0.

Proof. Similar to the proof of Lemma 4, we have

Yh(sit) > Clt—s+Di+1) =S Brt+d —d*—s+1).
n#£i

ReplacingS}')i (u) by C(t —s + D; +1) = 3, ; B*(t + d' — d" — s + 1) and Applying Theorem 2 and
Lemma 5 we have

P[D'> D] < P[Iil%({ﬁi(u) —[C(u+D;) =Y B™u—d*+d")]} > 0]

n#£i
= Plmax{B'()+ Y B'(u—d"+d) - Clu+D)}>0. 3  (22)
v= n#i
For D; = d', Inequality (21) can be simplified as
P[D' > d'] < P[rgg{)}({; B"(u—d")—C(u)} > 0] (23)

which is the delay-bound-violation probability of class

3 Inter-Services Resource Sharing in Link-Sharing GPS

In Section 2, we developed tools for managing multi-clasgises using statistical service envelopes, con-
sidering SP and EDF as specific examples. Here we study ahiakng GPS server, again using the
framework of statistical service envelopes, with a goalnaféasing the total utilization of the multi-class

GPS server by exploiting inter-class resource sharing.
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Figure 2: System Model for Admission Control

Classes

Flows

3.1 Generalized Processor Sharing

Figure 2 shows the system model for admission control in di+olalss GPS scheduler (see [7] for example).
There areN service classes in the system, each allocated a weigHEach service class provides either
deterministic, statistical, measurement-based, or éféstt serviceS. The admission control algorithm
should admit a new flow only if the QoS of all classes can bafsadi. This multi-class service model can
also support flow-based services, in which some servicaadaserve only one flow. Without considering
inter-class resource sharing, one could view each serldss as a FCFS server with capagitywhich is the
guaranteed service rajé = —‘%C, as defined by the GPS service discipline. However, whilecetipd
this isolation property of GPS’ simplifies admission contitolioes not corporate potential utilization gains
due to inter-class statistical sharing.

Q)

Session 1 ¢> Y1(t)
_ Q(t) t\‘

Xt Q%’

Session N X0 |

Figure 3: GPS System

Figure 3 illustrates the GPS system in the view of inputspoist and buffers. The aggregate traffic in
each class is viewed as a session, and the notation for jrquifsits and queues are as defined in Section 2.
Forl <i < N, letY?(s,t) be the amount of clasdraffic served durings, t]. By definition of GPS,

Yifs,t) o o8
Wz(b—m,m—l?Q,...,N (24)

®Here, we study multiple deterministic and statistical &rclasses and leave study of measurement-based senvigeire

work.
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for any class backlogged durings, t]. Since each class has a guaranteedg‘aténenever it is backlogged,
the deterministic service envelope of clasgs s}, (t) = g (¢ + D;).

3.2 Statistical Service Envelopes in GPS

In order to fully exploit inter-class resource sharing, vewide a technique for partitioning service classes.
First, we illustrate an isolation/sharing model for adngisscontrol in Figure 4. In this model, some service
classes will use their deterministic service envelope miagion control. These service classes may support
deterministic services, in which deterministic traffic elopes are used. Or they may support less aggres-
sive statistical services which do not wish to exploit spaapacity from other classes. In view of service
envelopes, we refer to these service classasadation classes (denoted &9. Apart from these isolation
classes, other service classes will exploit inter-classugce sharing using their statistical service envelope
to admit an increased number of flows into the traffic class. r¥fler to these service classessisring
classes (denoted &. Sharing classes cannot support deterministic servimgisgcan support statistical,
measurement-based, and best-effort services.

%]
Q
0
& Det. | Sta. |MBAC | _ | Sta. | MBAC | [<—Best-Effort
o
|
|
|
|
Y 1
o aad
T |
|
|
|
Isolation Sharing

Figure 4: An Isolation/Sharing Model for Admission Control

Below, we derive an expression for the statistical serviveepes of sharing classes, which with ap-
plication of Theorem 2 provides a multi-class admissionti@est which incorporates inter-class resource
sharing.

Lemma 7 Ina GPS scheduler with classraffic bounded by3?(¢) andb’(t), the statistical service envelope
for sharing clasg is given by

Sh () = ﬁ[C(t + D)~ Y Bt + D)) (25)
m nel

Proof. Consider classarrivals (i € S) att¢ which have deadling + D;. The the essential traffic
Xp.(s,t) (n € T) which gets serviced before the classaffic arriving att contains at most clasgs-raffic
arriving in the intervals, t + D;]. That s,

X, (s,8) < X"(s, L+ D). (26)
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Notice that for isolation classes such as those obtainingterministic service, this bound is quite tight, as
such classes incur little or no queueing delays.

With the total capacity available in the intenval ¢ + D;] given byC(t — s + D; + 1), according to
Lemma 1 and similar to the proof of Lemma 4, the capacityalbsharing classes is given by

Y (sit) = (Clt—s+Di+1) =Y Xp(s,t)"
nel
> (C(t—s+Di+1)— > X"(s,t+ Dy)*
nel
>y (Ct—s+Dij+1)—> B"(t+D; —s+1))".
nel

(27)

For a particular class € S, the GPS scheduler distributes this available service iremhted-fair
manner among classes. Thus, using Equation (24) and Defifitithe statistical service envelope is given

by

__ ¢ N n .
=5 (bm[C(t—i—Dz) %B (t+ D;)]. O (28)

We conclude by describing the complete admission contgareihm for a multi-class GPS server. Each
class provides traffic parametdrgt) and B*(t), and QoS parameteis; and P*. Each class has a weight
¢* and guaranteed ratg, with guaranteed service enveloﬁgi (t) = ¢*(t + D;). For deterministic service
classes, ifmax;{b'(t) — s}, (t)} < 0, then the deterministic QoS for flows inside clasis guaranteed.
For isolation statistical service classes,ffmax;{B(t) — s}, (t)} > 0] < P*, then the statistical QoS of

classi is satisfied. Fosharingstatistical service classes, the statistical QoS is sedisfi’ [max;{ B*(t) —

s (1)} > 0] < P orif Plmax;{B(t) — S}, (1)} > 0] < P exists for a statistical service envelope
St (t).

Sp(®)

4 Computational and Experimental Investigation

In Sections 2 and 3, we studied the delay bound violation alsihiy using statistical traffic and service
envelopes for SP, EDF, and GPS schedulers. In this sectimaddress the computational aspects of these
admission control algorithms and perform trace-drivenuations to quantify the ability of our approach to
exploit inter-class resource sharing. The workload casisika set of 30-minute traces of MPEG compressed
video from [18].

4.1 Computing the Delay Tail Probability

The admission control tests of Sections 2 and 3 are expresssdms of independent random variables
(from arrivals of different flows) with temporal correlationithin each flow. As the expression for the
gueue length distribution of a FCFS takes a similar funetidarm [13], we can apply previous queueing
theoretic techniques in computing probabilities such asehin Equation (23). Possible techniques include
include large deviations theory and maximum-variance @ggres and others reviewed in [13]. Here, we
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apply the maximume-variance technique of [4] due to its cotatonal simplicity and experimental accuracy

when multiplexing a large number of sources. Regardledsgifer moments than the first and second of
the traffic envelopes are available, the results below caefied using large deviations techniques using
an approach such as [3].

To approximate each flow’s traffic descriptB§(¢), we use the rate variance envelopgls; () and mean
ratem;, i.e., E{B;(t)} = m;t and va{B;(t)} = t*RV;(t). The details of computation faRV;(t) and
m; are given in [11]. When flows are multiplexed, the aggregedffi¢ envelope for class approaches
a Gaussian envelope with(t) having meard_ ;. tm;, and variance_ . ¢, t?RVj(t) [11]. In practice,
traffic flows can specify policing parameters, and use [1Z2pimpute such statistical traffic envelopes from
the deterministic parameters, e.g., standard dual leagyeburaffic descriptors can be appligd.

To calculateP[max,{ B'(t) — S, (t)} > 0] in Equation (7) we utilize the maximum variance approach
of [4] which computes the normalized excess arrivals at ttaidant time scale as

of = var{Bi(t) - Sp, ()} = var{B'(t) — Sp, ()},
A 0— B{B(t) - Sp, ()} _ 0— E{B'(t) — S}, ()}
o = iItlf Q. (29)

Approximating{ B*(t) — S}')i (t)} as Gaussian, under conditions (C1)-(C2) in [4],

Plmax{B(t) — S}, (t)} > 0] > max P[B'(t) — 5}, () > 0] = m?xP[Bi(t) — Sp.(t) > 0] = ¢(a)

and
2

—_— I o

Plmax{BT(0) - 5p, (1)} > 0] < e % (30)

where¢(a) = \/%f;o e_édx. Roughly, the lower bound replaces the probability of theiimam with
the maximum probability, and the upper bound uses the darhitime scale, the value df minimizing
Equation (29), to derive the exponential asymptotic uppamlbl of Equation (30). Proofs of these two
bounds are given in [4], and we utilize both in the experiradialiow.

4.2 Admissible Regions in Multi-Class GPS

The scenario we consider is a link sharing GPS server wittahdapacity oft5 Mbps. Different weights)’
are given to different classes, which require either detastic or statistical services. In the experiments,
some classes will exploit inter-class resource sharingievathers will not.

In general, the benefits of inter-class resource sharirrgase with the number of classes, as in the limit
of one flow per class, a system without inter-class sharifabes as a deterministic service. In these first
experiments, we consider two classes to obtain insightstiminimumperformance gains of inter-class
sharing.

5The particular traffic model chosen and the method by whigrsusbtain their traffic parameters is addressed in [13] and
elsewhere and is beyond the scope of this work.

15



In each experiment, we calculate the admissible region doh elass according to the flows’ traffic
characterizations and QoS requirements using the admissittrol algorithm described in Section 3. For
example, in the first experiment, we let vary from 0 to 1 and)* = 1 — ¢'. The maximum admissible
numbers of flows in each service class are evaluated forreliffaveight assignmerftp®, ¢?). The admis-
sible region for each class is the area in two dimensionatespaunded by the curve determined by these
maximum admissible numbers of flows. We then perform tracesd simulations using a GPS scheduler
with each flow having a randomly shifted initial phase. Mamgdations are run for each combination of
numbers of class one and class two flows and the average daliayl lviolation probability is measured.
The maximum numbers of class one and class two flows subj#tistmeasured QoS constraint is then the
experimental admissible region.

In the first experiment, we consider a GPS server with twoiserdasses. Class 1 requires deterministic
service, withD; = 10 msec, class 2 requires statistical service, vidh= 20 msec andP? = 10%. In
the admission control tests, we use both the lower bound oatan (30) and the upper bound of Equation
(30) to approximate the deadline violation probability.

16 T T T T T T
14 N .
AN LB,NoSharing— "
12 - AN UB,NoSharing---- % .
AN LB,Sharing ----- b
— 10 A ' ; ]
" UB,Sharing -
n 8 X -
<
O RN
6 | \\\\\ —
4 | N \\\ —
2 | o N i
0 1 1 1 1 1 L

0 10 20 30 40 50 60 70
Class 2

Figure 5: Admissible Regions for Deterministic and Stat#tServices

Figure 5 shows the admissible regions for class 1 and 2 undedffferent conditions: with and without
inter-class sharing for class 2, and upper and lower boumdthé deadline violation probability. Notice
the significant increase in the admissible region due toogumpy inter-class resource sharing using our
framework of statistical service envelopes. For exampdingithe lower bound and setting = ¢° =
C/2, i.e., ¢p1 = ¢9, without inter-class sharing, the admissible regior{lis< class 1 flows< 7,0 <
class 2 flows< 31) and the total utilization i45.3%. In contrast, with inter-class sharing, the admissible
region is(0 < class 1 flows< 7,0 < class 2 flows< 62) and the total utilization i$2.2%, an increase
of 81%. We also observe that the differences in the admissibl@megiising the lower and upper bounds
are merely 1 or 2 flows. We next perform trace-driven simaketiand measure the experimental delay
bound violation rates using the admissible region caledl@tom the “sharing” tests. For the lower bound,
the mean delay bound violation probability for class 2 is 10—, while for the upper bound, the mean
violation probability for class 2 is approximatelyx 10~°. Since the QoS parameter & = 10~%, we
observe that the actual admissible region boundary musttweslen the LB and UB sharing curves, and that
the admissible regions calculated using both bounds ayeclese to the true ones.
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Figure 6: Admissible Regions for a Three-Class GPS Server

In the next experiment, we consider a three-class GPS skgne@liass 1 requires deterministic service
with D; = 20 msec, class 2 requires statistical service with = 20 msec andP? = 10~*, and class 3
requires statistical service with; = 30 msec andP? = 10~*. Class 1 and 2 are isolation classes. We
perform admission tests with and without class 3 exploititigr-class sharing, and use the lower bound of
Equation (30) to approximate the deadline violation prditghThe admissible region is shown in Figure 6,
which also illustrates the significant utilization gain bétapproach.

Class 3
10

30

20
10 Class 2

10
Class 1 20

30

Figure 7: Increase in Admissible Regions for 3 Statistidals€es

In the above two experiments, the deterministic servicesdsexploited by the statistical service class
to allow inter-class sharing. In the next experiment, wewslizat our approach is also able to exploit
inter-class sharing among statistical service classescaffsider a three class GPS server with each class
providing statistical services with the same Qd%:= 20 msec and” = 10~*. Class 1 and 2 are set to
isolation classes. In Figure 7, we show the difference iratlraissible regions by allowing class 3 to exploit
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inter-class sharing.

From Figure 7, observe that ignoring inter-class shariagldeo as many as 8 fewer flows admitted in
class 3, for a loss of approximatelp% of the resource utilization. In this scenario, the intrassl statistics
are fully exploited, and the gain comes solely from the iotass statistics. In a high-speed GPS server,
even if each class provides statistical service, when timebeu of service classes is large, the inter-class
resource sharing gain can be significant.

5 Conclusions

In this paper, we developed multi-class admission contfigrahms that exploit inter-class statistical re-
source sharing. We developed a framework of statisticalcamenvelopes to study the problem and showed
how such envelopes characterize the excess capacityldeaitaa traffic class due to varying resource de-
mands of other classes. We applied the approach to StrmttiriEarliest Deadline First, and Generalized
Processor Sharing schedulers and experimentally denatettthat our admission control algorithms are
able to extract a significant utilization gain from inteas$ resource sharing.
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