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Abstract

Providing statistical quality-of-service guaranteesaduces the
conflicting requirements for both deterministic traffic retedto
isolate and police users and statistical multiplexing tiicégntly
utilize and share network resources. We address this isgue b
introducing two schemes for providing statistical sersgite de-
terministically policed sources: (1adversarial modeesource
allocation in which weboundthe stochastic envelopes of po-
liced streams and provide a statistical service for adveeda
or worst case sources and (Rpn-adversarial modallocation

in which weapproximatethe stochastic envelopes of policed,
but non-worst-case streams in order to exploit a furthetista
tical multiplexing gain in the typical case. Our key techréq
is to study the problem within the domain of deterministid an
stochastic traffic envelopes, which allows us to explicitigsider
sources with rate variations over multiple time scalesagbte-
sults for any deterministic traffic model, and apply accerat-
mission control tests for buffered priority schedulers.a¥eluate
the scheme’s performance with experiments using tracesmf ¢
pressed video and show that substantial statistical makipg
gains are achieved.

1

Future integrated services networks will multiplex burstwlti-
media traffic streams while simultaneously providing theithw
Quality of Service (QoS) guarantees in terms of throughpdt a
end-to-end delay. To provide such guarantees, networkiress
will be reserved according to both the applications’ spedifiaf-
fic parameters as well as their QoS requirements.

Deterministic QoS guarantees were studied in [1-4] to sup-
port applications that have stringent performance reqmergs
for a service without packet drops or delay bound violatidns
addition to thisabsoluteguarantee, a deterministic service also
has the advantage efforceability when the network guarantees
QoS based on the clients’ worst-case descriptions of tradfia,
the network can easily verify that these traffic specificgaiare

Introduction

To overcome the utilization limits of a deterministic sewyj
statistical multiplexing must be introduced to exploit thet that
the worst-case scenario will occur quite rarely. To accdont
such statistical resource sharing and provide a statisfcs
guarantee, the traffic streams’ rate fluctuations and timree€o
lations must be characterized. In the literature, such qrop
ties are often represented via stochastic traffic modettyding
Markov Modulated, Self-Similar, and others [5-8]. Howevera
shared public network with misbehaving or malfunctionisgrs,
resources should not be allocated according to such stiichas
source characterizations since they are inherently difficuthe
network to enforce or police. This work therefore addresises
fundamental conflicting requirements for both determioisaf-
fic models to isolate and police users, and statistical piaking
to efficiently utilize network resources.

In this paper, we describe a new envelope-based approach to
providing statistical QoS guarantees to deterministjcadiliced
streams. Our key technique is development of new methods to
determine a stream'’s stochastic envelope directly frordéter-
ministic envelope, or equivalently, from the parametergheaf
policer, without requiring explicit determination of a fieular
worst-case arrival pattern. We show that with an accuratierde
ministic traffic model such as the D-BIND model of [2], the cor
relation structure and relevant time scales of the traffictvare
characterized by the deterministic model are preserveldiint
ferred stochastic envelope. Thus, we explicitly consiberdase
of highly bursty traffic streams with rate variations overltiple
time scales, so that if the source’s deterministic envelugieates
that the stream exhibits multiple time scale behavior, dbtiaé
inferred stochastic envelope.

We focus on developing two methods for obtaining a stream’s
stochastic envelope from its network-enforceable pararaet
First, we show how a stream’s stochastic envelope can be
boundedbased on the parameters of the policer, so that regard-
less of how adversarial a stream may be, the network’s s¢acha
tic characterization of the stream is not violated. Secansl,
show how the stochastic envelope of a deterministically- con
strained stream may kepproximatedor a non-adversarial po-

satisfied. On the other hand, the most important drawback of a liced stream, which, while bursty, does not always transtsit

deterministic service is that, by its very nature, it musteree
resources according to a worst-case scenario, and herareiot
achieve a statistical multiplexing gain.

traffic in the statistically worst possible way. Comparedtte
former approach, the latter approach is able to achieve an in
creased statistical multiplexing gain, since the extrhstechas-



tic envelopes are based on properties of non-adversaiatfo 2 Guaranteed Services

streams rather than worst-case ones. We term these two modes

of inferring stochastic properties “adversarial mode” 4ndn- A network service that guarantees QoS may be classifiedss eit
adversarial mode” respectively. Finally, once the stotban- a deterrr_nn_lstlc service, W_hICh pro_\/ldes an gb§olute gueean
velopes of the deterministically constrained streams btaiioed, or a statistical service, which provides a statistical enance

we apply the admission control test of [9], which we experime  guarantee.
tally found to be highly accurate, even for traffic streanthwate

variations over multiple time scales. 2.1 Deterministic Service

A deterministic service supports applications requirihgttno
packets are dropped due to buffer overflows and that no packet
violate their guaranteed end-to-end delay bounds. Theagpyim
components of a deterministic service are the parametktriaé
fic model, which provides the network with a worst-case dpscr
tion of a source’s arrivals, and the admission control t@kich
determines whether each source’s QoS requirement can he met
even in a worst-case scenario, e.g., if all streams simedtasly
send a burst of traffic.

When utilizing a deterministic service, network clientesily
their traffic characteristics to the network via a deterstinitraf-
fic model which upper bounds the streams’ arrivals. Spedifica
a deterministic traffic model uses parameters to define fictraf
constraint functiorb(¢), which constrains or bounds the number
of bits that a source can transmit over any interval of lerigth
Denoting A;[s1, s2] as the number connectignarrivals in the
interval [s1, s2], a traffic constraint function (and deterministic
envelope}; (¢) bounds an arrival sequendg if

This work differs from previous studies of statistical resme
allocation for policed traffic [10-16] in several aspectss§ us-
ing envelope-based techniques, we find that policed soceares
exhibit multiple times scale rate variations and have attarss-
tics quite different from the periodic on-off sources sadiprevi-
ously. Indeed, we find that characterizing bursty traffieatns
such as compressed video with a single time scale model can
result in significant inaccuracies in the resource alloreilgo-
rithm. Second, by determining a policed stream’s maximal en
velope rather than its worst-case arrival sequgrazese we ob-
tain computationally simple admission control tests, ken[iL 7],
for example, which requires the solution to an optimizapoob-
lem to find the worst-case arrival pattern subject to thecipradi
constraints, or [16], which requires an optimization ovesgible
buffer and bandwidth allocations. Third, in contrast to-if]] as
well as our previous work of [17], we investigate resourde-al
cation fornon-adversariapoliced sources (in addition to adver-
sarial ones) to exploit higher statistical multiplexingirgathan
are possible in a completely adversarial scenario. Finaly Ajls, s+ t] < by(t), Vs, t>0. @)
approach applies to any deterministic traffic model and igies/

admission control tests for buffered priority schedulers. Different traffic models parameterize different constrain

functionsb(t). For example, théa, p) or leaky-bucket traffic
_ _ model [1] defines a constraint functidfit) = & + pt so that
To illustrate the scheme’s performance, from trace-drven g source is allowed to send a burst of sizéits in an arbitrar-

simulation experiments with MPEG-compressed video traoéls  jly small interval, but over longer interval lengths, theusee is
a 45 MbpS link with a buffer size Correspondlng to 20 msec de- constrained to an upper-average rate bﬁs-per-second.
lay, the measured maximum achievable utilization is 86%afor We introduced a more accurate traffic model, termed D-BIND,

loss probability of.0=°. For this same scenario, our adversarial- in [2] to better characterize the burstiness propertieseafis-
mode admission control test utilizes resources to 41%,9%ace tic traffic streams. With the D-BIND model, sources characte
ily lower than that of the trace-driven simulation sinceslcheme ize their traffic to the network via multiple rate-intervais,
assumes that each stream is independently adversariah vghi (Ry, I1.), where a rateRy is a bounding or worst-case rate over

not the case for these video streams. This represents aeette  every interval of lengtt,.. With P rate-interval pairs, the model
timate of the admissible region than [12] which obtains 14B6 U parameterizes a piece-wise linear constraint functioh Wifin-

lization in this case. Finally, our non-adversarial-modmission ear segments given by
control test utilizes resources to 79%, achieving most efsta-
tistical multiplexing gain by considering policed, but raorst- b(t) = M(t —Ie) 4 Rely, T <t < I

case streams. Indeed, with non-adversarial-mode alotatie Iy — I
find that once traffic streams are aggregated and econories-o
scale are present, even simple approximate mappings of dete
ministic to stochastic envelopes can lead to consideraluyrate
admission control tests.

@
with 7o = 0. We also showed how this source characterization
captures a stream’s burstiness properties and temporalatizn
structure, even over long time scales [2] . For example, afth
MPEG-compressed video source, the stream’s pattern af alte
nation between large intra-coded frames and smaller auded
The remainder of this paper is organized as follows. In Sec- frames is evident from the values of the rate-interval pairs

tion 2, we describe the important components of both determi In [4], a(#, ) model is considered along with the above traf-
istic and statistical network services. In Section 3, wesent the fic models. This model consists &f (o4, pi) leaky buckets in
scheme for extracting stochastic envelopes of traffic stesfaom parallel such that the resulting constraint function iscpievise

their enforceable parameters, which we apply to admission ¢ linearconcavewith P linear segments:
trol in Section 4. Finally, we evaluate the scheme expertain )
in Section 5. b(t) = min (0% + px t). (3)



The (&, 7) model is therefore a special case of the D-BIND a stream’s arrival rate over intervals of lengt®]:

model.

All of the above deterministic traffic models have the praper
that they are enforceable by the network so that when a client
specifies its traffic parameters to the network, the netwark c
verify that these parameters are satisfied via policing elements

such as multi-level leaky buckets [1]. As illustrated in trig 1,
regardless of the traffic stream’s arrival pattern at theagice
of the policer, by delaying or dropping packets that violtdte
traffic parameters specified by the client, the network isigshs
that Equation (1) is satisfied at the output of the policer.

Ajls;s+]<h (t)@

Figure 1: Policing of the Traffic Constraint Functibj(t)

Arrivals

Policer by (t)

While a deterministic service has important advantages in

A][s,s—l—t]). @

RV;(t) = Var ( ;

This characterization captures the second moment caoelat
structure of an arrival process in the same way as an auaaerr
tion function or a variance-time characterization used 8].[ We
use theRV; (¢) characterization simply because it relates more
directly to admission control. Additionally, we restriairselves

to a second moment envelope rather than considering, fon-exa
ple, envelopes of distributions or moment generating fionst

in order to devise an admission control algorithm that is pom
tationally simple as well as highly accurate.

We now present two methods for obtainify/; (¢) from the
deterministic enveloplg (¢): adversariamode in which the rate-
variance envelope is upper bounded, and-adversariamode
in which it is approximated for policed but non-worst-casdfic.
We refer to the respective envelopedds* (t) (adversarial) and

terms of the strength of the guarantee itself as well as the en RV;(t) (non-adversarial).

forceability of the traffic specification, it can have a sfgrant
limitation in terms of the achievable utilization of the werk’s

resources. We showed in [4], that when MPEG-compressed ac-

tion movie videos with multiple time scale rate variatiorgain
a deterministic QoS guarantee, the utilization of the mldker
is limited to 30% for delay bounds less than 100 msec.

2.2 Statistical Service

A statistical network service provides a probabilisticfpenance
guarantee; it achieves a statistical multiplexing gainiplating
stochastic properties of individual traffic streams as wetatis-

tical independence among streams. However, strong aseunspt

on the stochastic properties of traffic streams are inhigrdiifi-

cult for the network to enforce or police. For example, cdasi
a Markovian source: in real time, it is impractical to deteren
whether a stream is following a certain transition matixglose
enough to its implied marginal distribution, or has the iiezpl
autocorrelation structure. Consequently, if a particalpplica-

tion does not conform to the chosen stochastic model, naguar
tees can be made. Moreover, if admitted to the network, such a

stream could adversely affect the performance of otherieppl
tions if it is statistically multiplexed with them.

In this paper, we focus on providing statistical serviceaags
enforceable deterministic traffic models.

3 Enforceable QoS Guarantees

In this section, we introduce techniques for obtaining lsése
tic envelopes of traffic streams from their policeable partars
in order to achieve a statistical multiplexing gain and jeva
network-enforceable statistical service.

3.1 Extracted Stochastic Envelopes

The stochastic envelope that we consider in this paper is the
rate-variance envelopBV;(t) which describes the variance of

3.2 Adversarial Mode

Here, we derive a bound on the rate-variance envelope of a de-
terministically policed stream. We refer to this as “adeeis
mode” for mapping; () to RV,*(t), since by bounding the rate-
variance envelope, the network is assured that regardfebe o
behavior of the original source, the stochastic enveloesapo-
licer's output is upper bounded. Together with the appedpri
admission control algorithm, the enforcealdl¥* (t) character-
ization provides a mechanism for delivering a statistiealEe
that is able to extract a statistical multiplexing gain evfeall
sources are independently adversarial, i.e., if sourceadver-
sarial, but not collusive.

The following proposition shows how a stream’s stochastic
envelope can be upper bounded from the parameters of the poli
ing elements.

Proposition 1 If streamy is stationary and its arrivals are upper
bounded such that[s, s + t] < b;(¢) for all s, t> 0, then its
rate-variance envelope is upper bounded by:

RVJ*(t) S ¢Jbg (t) _ ¢§ (5)
whereg; is defined as:
6= Jim 4 ©)

Proof: Let the random variablg (s) represent sourcgs in-
stantaneous rate at timeand leta; (¢) represent the total arrivals
in an interval of length,

s+t
ay(t) = / (s ds @)

which depends only onfor stationary sources.

1For example, for a source parameterized by multipig, p;,) pairs
as in Equation (3)$; is simply the minimum of the,'s.



Denotingf:,;(x) as the distribution od;; (¢), we show that for
anyt, the maximal value oRV;(t) = Var(a;(t)/t) subject to
the constraints of the policing elements

s+t
/ rj(s)ds <b;(t) Vs, t >0 (8)

is given by Equation (5) and is attained when the distributd
a;(t) is given by

* _ b](t) - ¢Jt ¢Jt
ft,] (l‘) - ( b] (t) 5(1‘) + b] (t) 5(1‘ bJ (t))
such that for an interval length Equation (9) describes a bino-
mial distribution.
According to (8).f:,;(z) = 0 for x > b(t) andz < 0 so that
the rate-variance envelope of a policed stream is given by

(©)

Ea,(t)* — (Ea,(t))*
t2

b (t)
&*dF,y ;(x) —

RV(#)

(10)

1
2 J,

1

b;(t) )
([ aar, )
0

for some distributiony; ; (z) satisfying (8). For the distribution
1 (=) of Equation (9),RV;*(t) is given by Equation (5). To
show thatRV}*(t) > RV;(t) for all + and for all distributions
f+,5(z) satisfying (8), observe that
b (t)
/ & dF, ;(v)
0

by(t)¢; 1

RV} (1) = RV,(t) e 2

b (t b;(t) 1 bj(t)
- %/ x dFej(z) - t—2/ 2dP(z)
0 0
(1)
since the mean ratEa; (t)/t is given by
1 b5 (1)
Z/ .Z‘dFtJ(.T)):qﬁ].
0
Rewriting Equation (11),
b (t)
. 1 7 by (2) T
r - =1 [ B (1o ar, )

which is clearly non-negativeQ

Proposition 1 applies to any deterministic traffic modetsin
each deterministic traffic model parameterizes a constiaire-
tion b;(t) as described in Section 2.1; the more accurately the
model characterizes the traffic stream, the tighter theespond-
ing bound onRV}*(t).

We also note that for an adversarial source to realize the var
ance bound at a time-scalé it would first transmit its maximal
burst such that4,[0, ] = b,(t) for ¢t < T. Next, the source
would remain idle in order to obtain enough credits or tokens
from the policer to send this same burst of sig€7") again.
This is different than a “greedy” source defined in [19] which
always transmits a packet when allowed to do so by the policer
and never remains idle to collect tokens; for a greedy source
A;[0,t] = b;(¢) for all . For example, consider(a, p) source
with b;(¢t) = o; + p;t. A greedy source would send a burst

of sizes; bits att = 0 and then send traffic at constant rate
p; for the remainder of the connection’s lifetime. In contrast
source that alternately sends bursts of sizand remains idle for
atimeo;/p; has the same mean but greater variance and hence is
more adversarial for statistical multiplexing. The adriuason-

trol test of Section 4 shows how rate variation at differémtet
scales leads to an increased loss probability and delagebaiu
olation probability.

3.3 Non-Adversarial Mode

By upper bounding the stochastic envelope of policed traffic
streams as in Proposition 1, a statistical service can badad
even in the case that all traffic streams are independentigrad
sarial. Below, we show how this same rate-variance envelape
be approximatedor policed arrival streams. In other words, we
derive an expression foﬁvj(t) to describe the envelope of a
non-adversarial policed stream that satisfies Inequdljty (

Proposition 2 If streamy is stationary and its arrivals are upper
bounded such that[s, s + t] < b;(¢) for all s, t> 0, then its
rate-variance envelope is approximately:

~ ¢ij(t) — t¢?
= 12t
whereg; is defined by Equation (6).

RV (1) (12)

Proof: A deterministic traffic constraint functién(¢) bounds
the worst-case arrivals of connectipnOn a time scalé’, a burst
of sizeb; (T') is the largest-sized burst allowed by the policer. But
whatis the probability or fraction of time that the sour@smits
such bursts? In Proposition 1, the rate-variance envelopad
RV*(T) is realized when a source sends the worst-case burst at
time scal€l” as often as possible subjectto the policer constraints,
namely, when the source achieves

ost
bj(t)’

Contrastly, we define a “non-adversarial’ policed traffic
stream as one in which; (¢) can take on values across its entire
policeable rango, b, (t)] rather than only its extreme values, 0
andb; (¢), that is,

Prob{a, (1) = b; (1)} <

(13)

fes(@) >0, 0<w <by(t). (14)

In particular, denoting a uniform distribution da:,=2] as
Ulz1, z2] we define the distribution df;(¢) as

a;(t) ~ {

S0 tha@](t) is given by Equation (12)3

In other words, with probabilitg; ¢ /b; (¢), @, (t) is distributed
uniformly between 0 and the mean number of bits in intervéls o
lengtht, ¢;¢t; and with probabilityl — ¢;t/b;(¢) it is uniformly
distributed between the mean and the maximburtt,).

Importantly, we note that while Equation (15) is that of a
weighted uniform distribution, this arrival charactetina has no

5t
wr

w.p. 1—

U[07 ¢J t]
Ulejt, b (t)]

(15)

7
5.

5 (%)



relationship to a “uniform” source in the traditional senise,, a
source withiid uniform interarrival times. In contrast, the rate-
variance envelopes of Propositions 1 and 2 allow for anraryit
autocorrelation structure over any time scales. The exaat bf
RV (t) will depend on the traffic model used to bound the arrival
stream and the parameter values for that particular stream.
Finally, by comparing Equations (5) and (12) we notice the
relationship betweeRV"(t) andﬁvj(t). This is due to the re-
lationship between an extremal distribution which takesalnes
of 0 andb; (¢) and the weighted uniform distribution.

3.4 Example Envelopes

Figure 2 illustrates the rate-variance envelopes obtafrad

ping from policeable deterministic parameters to a statihas-
velope is able to approximately characterize the compleady
ics and autocorrelation structure of this highly burstgéra

4 Admission Control for Policed

Streams

Here, we describe an admission control test for policedsise
multiplexed at a Static Priority scheduler. In particulae, show
how to determine packet loss or delay bound violation prabab
ity as a function of the streams’ rate-variance envelopésghv

in turn can be calculated from the parameters of the polieing
ements using Propositions 1 and 2. While we focus on a single

Propositions 1 and 2 for the MPEG-compressed video trace de- multiplexer, our approach is applicable across multiplavoek

scribed in Section 5. The curve labeled “ActudV (t)” is the
true rate-variance envelope as directly computed from rifeet
asin [9]. To obtain the “Adversarial Mode” and “Non-adveiah
Mode” envelopes, we first calculate the deterministic patans
of the source. In particular, we characterize the sourck @it
rate-interval pairs using the D-BIND traffic model [2]. Tlees
rate-interval pairs, which are policeable by the netwodcame-
terize a traffic constraint function as given by Equation {&)m
which RV*(t) is calculated using Proposition 1 a@](t) us-
ing Proposition 2.

1013§
t | .

S 12| Adversarial Mode |
= 107"¢

(&) =

3 r

‘S L

(&)

g 101 ! \

.% o

> [ Actual RV(t)

10" ‘ ‘ ‘
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interval length (sec)

Figure 2: Envelopes from Video Trace

We make the following observations about the figure. First,
the trace itself exhibits a non-trivial autocorrelatiomusture,
even over relatively long time scales. This can be seen fram t
slope of theRV (t) curve as depicted on the figure’s log-log scale:
if arrivals in successive intervals of lengthare uncorrelated, then
the slope of this curve would be -1 at However, the curve for
the actual source has a slope considerably greater thaenff@v

nodes using techniques from [17]. For example, if traffieatns

are reshaped at each network node as in [20, 21], a stream’s de
terministic envelopé; (t) is reconstructed, and hence so is its
inferred rate-variance envelope.

A rate-controlled static priority scheduler [21] consistper-
stream rate controllers and a number of prioritized FCFSigse
(Figure 3). Each stream is assigned a priojitat connection
setup time based on its requested QoS, including whether it r
quires deterministic or statistical service, and on theiested
delay bound. Additionally, packets are rate controlledi(aence
policed) before being queued to ensure that each stream con-
forms to its specified deterministic parameters, namedyeit-
velopeb; (t).

det 1
— ] ]
— : } determ.
service
— ] det m
— link
4‘:' |—— e o e

stat.

service
N per-stream

rate-controllers

other
services

Figure 3: Static Priority Scheduler

As shown in Figure 3, such a scheduler can provide both de-

larget. Second, we observe that both of the inferred envelopes, terministic and statistical performance guarantees asasether

RV*(t) andﬁV(t) exhibit this same behavior, i.e., they reflect
the long-time-scale characteristics of the source. Thd&ates
that even deterministic traffic models are capable of capjuhe
stochastic properties of sources that exhibit rate vanatiover
multiple time scales. Finally, we observe that the non-ezhséal
mode rate-variance envelo@(t) is quite close to the stream’s
actual envelop&V (¢). Thus, even Proposition 2's simple map-

services. Priority levelget_1 throughdet_m provide m deter-
ministic delay bounds from.:_1 up todge:_». Priority levels
stat_1 throughstat_m providem statistically guaranteed delay
bounds fromi.;q:_1 UP t0d.tqt_m. CoONnections utilizing the sta-
tistical service obtain guarantees on the loss and delapdboi-
olation probabilitieswhereas connections utilizing the determin-
istic service obtain absolute bounds on delay and loss. , Thurs



approach provides uniform semantics for delivering QoSaua
tees, allowing all traffic streams to use the same policetabie
fic specification, regardless of the service they obtain. isdion
control tests that support connections utilizing a detristic ser-
vice can be found in [4]. At the lower priority levels, others
vices can be provided, including measurement-based ssraitd
best-effort service.

Denoting RV, ;(t) as the rate-variance envelope of soujce
at priority levelp, the delay bound violation probability at leyel
for a static priority scheduler with capacityis approximately

P{D, > dp} = [max
=t =Fp

exrp <_(C(t +dp) — “t,p)2
Vor 20?713
(16)

where

p—1
Ht,p = Z top; + Z Z(t + dp)ﬁﬁqm
J g=1 g

p—1
U?,p = Z t2R‘/PJ () + Z Z(t + dp)2RVq,J (t+dyp),
J q=1 3

andg, is the busy period bound at priority leve[1]
r
B =min{t > 0] Y > " by;(t) < Ot} 17)
g=1 g

Equation (16) uses [9] together with a well-known approxima
tion for the tail of a Gaussian distribution. The key techrq
in its derivation is the analysis of the traffic and buffer dymics
within a busy period, which has a duration bounded by Eqnoatio
(17). Moreover, with a heavy traffic approximati@j] a;(t) ap-

proaches a Gaussian distribution with m@r} ¢yt and variance

ZJ t* RV, (t). The test then considers that buffer overflows and
delay-bound violations can occur at any time-scale up tortve-
imal busy period. In [9], we experimentally found Equatids)

to be highly accurate in predicting the performance of advefi
priority multiplexer.

Notice that the probability of delay-bound violation isictily
increasing withRV; (¢), so that by considering the maximal rate-
variance envelop&V*(t) of each policed source (as in Propo-
sition 1), our estimate of this probability is also maxindzd-i-
nally, we note that for both adversarial and non-adverkalia:
cation, traffic streams must be statistically independemtanm-
collusive. If traffic streams are collusive, then a fully eletinis-
tic approach must be employed [4].

5 Experimental Investigations

In this section, we evaluate our proposed scheme for prviisj
enforceable statistical QoS guarantees via a set of traeend
experiments. With an implementation of the proposed resour
reservation scheme of Sections 3 and 4, we compare the stream
performance obtained in trace-driven simulations witft fire-
dicted by the admission control tests aRd (¢) traffic character-
izations.

5.1 Experimental Scenario

The workload consists of a 30 minute trace of MPEG-comprksse
video taken from an action movie. It was digitized to 384
by 288 pixels and compressed with constant-quality MPEG
1 compression at 24 frames per second with frame pattern
IBBPBBPBBPBB. Further details of the trace and its characte
istics may be found in [22].

For each simulationy streams or traces are multiplexed on a
simulated 45 Mbps first-come-first-serve link, with eackain’s
arrival pattern given by the movie trace with a start timesgro
uniformly over the length of the trace (30 minutes). For a&giv
number of connectiond” and buffer size” - d (the link capac-
ity times the delay bound) we measure the fraction of packets
that are dropped due to buffer overflow. Many simulations are
performed with independent start times and average reatdts
reported.

In the admission control part of the experiments, we deter-
mine the streams’ rate-variance envelopes from their eaédile
deterministic parameters as described in Section 3 anat@elpi
in Figure 2. We then use the admission control test of Section
4 to determine the maximum number of admissible connections
N, subject to the QoS constraints for deldyand loss probabil-

ity, e.

5.2 Results

Here, we compare the results of the trace-driven simulatidth
the admission control tests. To further evaluate our approge
also compare with the admission control algorithm of [12].

Figure 4 shows the results of the trace-driven simulaticth an
admission control experimertsThe figure shows the average
utilization of the multiplexer (which is proportional toegmum-
ber of connections a& ¢ /C') versus buffer size scaled to delay.
In other words, for a given delay depicted on the horizontal
axis, the vertical axis shows shows the maximum number of con
nectionsN (scaled to utilization) that can be multiplexed such
that all connections are guaranteed a probability of delaynd
violation or buffer overflow ofl0=* in Figure 4(a) and.0=° in
Figure 4(b).

In the figures, four curves are depicted (from top to bottom):
(1) the results of the trace-driven simulation; (2) adneission-
trol tests based on théon-Adversarial Mode?V (¢) traffic char-
acterization of Proposition 2 (an approximate rate-vamegnve-
lope for a non-adversarial, but policed, traffic stream)a@mis-
sion control tests based on thelversarial ModeRV * (¢) traffic
characterization of Proposition 1 (the worst-case rate&mae en-
velope of a policed stream); and (4) the admission contsbldé
[212].

Trace-driven Simulation - For the simulation curves of Fig-
ures 4(a) and 4(b), the average utilization of the multipieand
hence the number of multiplexed connections, increasdsimvit
creasing delay or buffer size. However, notice that indrepthe
buffer size beyond that of a 10 to 20 msec delay is of littleddien
i.e., larger buffers will not provide a better QoS or suppoatre
connections for a given QoS. Regardless, the utilizatioasra

295% confidence intervals for the simulations are all withisirgle
connection and are therefore not shown.
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Figure 4: Utilization vs. Delay Bound

the range of 79% to 92% (61 to 72 connections on the simulated utilization of the multiplexer to 12% to 22% for delays lebar

45 Mbps link) fore = 10™%, and in the range of 64% to 88% (49
to 68 connections) for = 10~%. Such high utilizations indicate
that these MPEG streams are well suited to statistical phekti
ing, despite their burstiness over multiple time-scales.

Non-Adversarial Mode Admission Control - The second
curve from the top depicts the admission control experisent
that use thel/%\7(t) characterization for non-adversarial policed
streams. Notice that the non-adversarial-mode curvestdte q
close to those of the trace-driven simulation, indicatimaf tvith
only knowledge of the streams’ deterministic parametersh(is
case, six worst-case rate-interval pairs), the schemeayd2i-
tion 2 is able to deliver a statistical service that explogsirly all
of the achievable statistical multiplexing gain.

Adversarial Mode Admission Control - The third curve
shows the results of the admission control experimentgubia
RV™(t) bound on a policed stream’s rate-variance envelope. As
described in Proposition 12V *(¢) boundsthe stochastic prop-
erties of policed streams so that statistical QoS guarawebe
provided even if all streams are independently adversatiah-
sequently, theRV*(t) envelope is necessarily more pessimistic
than theﬁV(t) envelope for non-worst-case policed streams (cf.
Figure 2) so that the adversarial-mode scheme captures baine
not all, of the possible statistical multiplexing gain. Usliza-
tions are 38% to 64%: (= 10~2) and 23% to 48%<( = 10~°)
for delays between 1 and 50 msec, utilizations that are densi
ably below that of the trace-driven simulation. Howevesuite
not capturing all of the multiplexing gain, this scheme doage
a distinct advantage in terms of protection: if there werenyna
adversarialsources rather than MPEG video sources (the MPEG
trace is bursty, but not worst-case), then the adversaddbenser-
vice is still able to deliver a rigorous statistical QoS @qurdee.

EMW95 Admission Control - The final curve depicts admis-
sion control experiments based on [12]. Here, the tracedsach
terized using the dual leaky bucket model with a peak rate&# 5
Mbps, a maximum burst timél{,,) of 41.7 msec, and an upper
average rate of 1.98 Mbps. The test assumes that sources trans-
mit traffic according to an extremal periodic on-off modettwi
these parameters. As shown, the test is quite consenatitiag

50 msec and loss probabilities less tHam?. Moreover, for the
smaller loss probability of = 10~° in Figure 4(b), the admis-
sion control test of [12] deemed the situation “non-stetidly-
multiplexable” so that the admissible region shown in the fig
ure is that of the deterministic (no-loss case) as comput§t] i
The primary reasons for this conservatism are two-fold.stFir
the dual-leaky bucket traffic model captures only a singteeti
scale of the source, and characterizing such highly buraffyct
streams as compressed video with an on-off model is nedlgssar
restrictive [23]. While one could capture longer time sdade
havior by characterizing the source with a smaller valug afid

a largeri.,,, the values of ,,, required to significantly reduge
are so large that performance gains are not achieved. Sgoond
[9], we showed that resource allocation using Equation &)
rate-variance envelopes can be highly effective for sauvdéh
rate variations over multiple time scales; this approaithirhtes
the need for a number of conservative approximations in [12]

6 Conclusions

Providing statistical performance guarantees in netwenk®un-
ters a conflicting requirement between the need to obtaiati st
tical multiplexing gain, which often engenders the use stis-
tical traffic model, and the need to police traffic streams, which
necessitates deterministictraffic model. In this paper, we in-
troduced a new approach for delivering a statistical serthat
extracts a traffic stream’s stochastic envelope from itsvoek-
enforceable deterministic parameters. We first showed loow t
bound a policed stream’s rate-variance envelope to pravita-
tistical service and achieve a statistical multiplexiningaven in

the case that all traffic sources are independently advakséale
then showed how to approximate this same rate-variance enve
lope for perhaps the more typical case of policed, but norstvo
case traffic streams; this latter approach allows the nétmr
exploit a further statistical multiplexing gain when mpléxing
non-adversarial sources. The key components of our apiproac
are (1) simple-to-compute mechanisms to bound and appad&im



stochastic envelopes from enforceable deterministicrpeters,
(2) use of an accurate deterministic model to charactehniz -

portant properties of the traffic, and (3) stochastic erpelmased
admission control tests for buffered, priority multiplexeEvalu-

ations of our approach with experiments using compresskgbvi
traces showed that the scheme is able to achieve a subkstatia
tistical multiplexing gain.
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