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Abstract
Providing statistical quality-of-service guarantees introduces the
conflicting requirements for both deterministic traffic models to
isolate and police users and statistical multiplexing to efficiently
utilize and share network resources. We address this issue by
introducing two schemes for providing statistical services to de-
terministically policed sources: (1)adversarial moderesource
allocation in which webound the stochastic envelopes of po-
liced streams and provide a statistical service for adversarial
or worst case sources and (2)non-adversarial modeallocation
in which weapproximatethe stochastic envelopes of policed,
but non-worst-case streams in order to exploit a further statis-
tical multiplexing gain in the typical case. Our key technique
is to study the problem within the domain of deterministic and
stochastic traffic envelopes,which allows us to explicitlyconsider
sources with rate variations over multiple time scales, obtain re-
sults for any deterministic traffic model, and apply accurate ad-
mission control tests for buffered priority schedulers. Weevaluate
the scheme’s performance with experiments using traces of com-
pressed video and show that substantial statistical multiplexing
gains are achieved.

1 Introduction
Future integrated services networks will multiplex burstymulti-
media traffic streams while simultaneously providing them with
Quality of Service (QoS) guarantees in terms of throughput and
end-to-end delay. To provide such guarantees, network resources
will be reserved according to both the applications’ specified traf-
fic parameters as well as their QoS requirements.

Deterministic QoS guarantees were studied in [1-4] to sup-
port applications that have stringent performance requirements
for a service without packet drops or delay bound violations. In
addition to thisabsoluteguarantee, a deterministic service also
has the advantage ofenforceability: when the network guarantees
QoS based on the clients’ worst-case descriptions of their traffic,
the network can easily verify that these traffic specifications are
satisfied. On the other hand, the most important drawback of a
deterministic service is that, by its very nature, it must reserve
resources according to a worst-case scenario, and hence it cannot
achieve a statistical multiplexing gain.

To overcome the utilization limits of a deterministic service,
statistical multiplexing must be introduced to exploit thefact that
the worst-case scenario will occur quite rarely. To accountfor
such statistical resource sharing and provide a statistical QoS
guarantee, the traffic streams’ rate fluctuations and time corre-
lations must be characterized. In the literature, such proper-
ties are often represented via stochastic traffic models, including
Markov Modulated, Self-Similar, and others [5-8]. However, in a
shared public network with misbehaving or malfunctioning users,
resources should not be allocated according to such stochastic
source characterizations since they are inherently difficult for the
network to enforce or police. This work therefore addressesthe
fundamental conflicting requirements for both deterministic traf-
fic models to isolate and police users, and statistical multiplexing
to efficiently utilize network resources.

In this paper, we describe a new envelope-based approach to
providing statistical QoS guarantees to deterministically policed
streams. Our key technique is development of new methods to
determine a stream’s stochastic envelope directly from itsdeter-
ministic envelope, or equivalently, from the parameters ofthe
policer, without requiring explicit determination of a particular
worst-case arrival pattern. We show that with an accurate deter-
ministic traffic model such as the D-BIND model of [2], the cor-
relation structure and relevant time scales of the traffic which are
characterized by the deterministic model are preserved in the in-
ferred stochastic envelope. Thus, we explicitly consider the case
of highly bursty traffic streams with rate variations over multiple
time scales, so that if the source’s deterministic envelopeindicates
that the stream exhibits multiple time scale behavior, so will the
inferred stochastic envelope.

We focus on developing two methods for obtaining a stream’s
stochastic envelope from its network-enforceable parameters.
First, we show how a stream’s stochastic envelope can be
boundedbased on the parameters of the policer, so that regard-
less of how adversarial a stream may be, the network’s stochas-
tic characterization of the stream is not violated. Second,we
show how the stochastic envelope of a deterministically con-
strained stream may beapproximatedfor a non-adversarial po-
liced stream, which, while bursty, does not always transmitits
traffic in the statistically worst possible way. Compared tothe
former approach, the latter approach is able to achieve an in-
creased statistical multiplexing gain, since the extracted stochas-
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tic envelopes are based on properties of non-adversarial policed
streams rather than worst-case ones. We term these two modes
of inferring stochastic properties “adversarial mode” and“non-
adversarial mode” respectively. Finally, once the stochastic en-
velopes of the deterministically constrained streams are obtained,
we apply the admission control test of [9], which we experimen-
tally found to be highly accurate, even for traffic streams with rate
variations over multiple time scales.

This work differs from previous studies of statistical resource
allocation for policed traffic [10-16] in several aspects. First, us-
ing envelope-based techniques, we find that policed sourcescan
exhibit multiple times scale rate variations and have characteris-
tics quite different from the periodic on-off sources studied previ-
ously. Indeed, we find that characterizing bursty traffic streams
such as compressed video with a single time scale model can
result in significant inaccuracies in the resource allocation algo-
rithm. Second, by determining a policed stream’s maximal en-
velope rather than its worst-case arrival sequenceper se, we ob-
tain computationally simple admission control tests, unlike [17],
for example, which requires the solution to an optimizationprob-
lem to find the worst-case arrival pattern subject to the policing
constraints, or [16], which requires an optimization over possible
buffer and bandwidth allocations. Third, in contrast to [10-16] as
well as our previous work of [17], we investigate resource allo-
cation fornon-adversarialpoliced sources (in addition to adver-
sarial ones) to exploit higher statistical multiplexing gains than
are possible in a completely adversarial scenario. Finally, our
approach applies to any deterministic traffic model and provides
admission control tests for buffered priority schedulers.

To illustrate the scheme’s performance, from trace-driven-
simulation experiments with MPEG-compressed video tracesand
a 45 Mbps link with a buffer size corresponding to 20 msec de-
lay, the measured maximum achievable utilization is 86% fora
loss probability of10�6. For this same scenario, our adversarial-
mode admission control test utilizes resources to 41%, necessar-
ily lower than that of the trace-driven simulation since thescheme
assumes that each stream is independently adversarial, which is
not the case for these video streams. This represents a better es-
timate of the admissible region than [12] which obtains 14% uti-
lization in this case. Finally, our non-adversarial-mode admission
control test utilizes resources to 79%, achieving most of the sta-
tistical multiplexing gain by considering policed, but non-worst-
case streams. Indeed, with non-adversarial-mode allocation, we
find that once traffic streams are aggregated and economies-of-
scale are present, even simple approximate mappings of deter-
ministic to stochastic envelopes can lead to considerably accurate
admission control tests.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the important components of both determin-
istic and statistical network services. In Section 3, we present the
scheme for extracting stochastic envelopes of traffic streams from
their enforceable parameters, which we apply to admission con-
trol in Section 4. Finally, we evaluate the scheme experimentally
in Section 5.

2 Guaranteed Services
A network service that guarantees QoS may be classified as either
a deterministic service, which provides an absolute guarantee,
or a statistical service, which provides a statistical performance
guarantee.

2.1 Deterministic Service
A deterministic service supports applications requiring that no
packets are dropped due to buffer overflows and that no packets
violate their guaranteed end-to-end delay bounds. The primary
components of a deterministic service are the parameterized traf-
fic model, which provides the network with a worst-case descrip-
tion of a source’s arrivals, and the admission control test,which
determines whether each source’s QoS requirement can be met,
even in a worst-case scenario, e.g., if all streams simultaneously
send a burst of traffic.

When utilizing a deterministic service, network clients specify
their traffic characteristics to the network via a deterministic traf-
fic model which upper bounds the streams’ arrivals. Specifically,
a deterministic traffic model uses parameters to define a traffic
constraint functionb(t), which constrains or bounds the number
of bits that a source can transmit over any interval of lengtht.
DenotingA

j

[s

1

; s

2

] as the number connectionj arrivals in the
interval [s

1

; s

2

], a traffic constraint function (and deterministic
envelope)b

j

(t) bounds an arrival sequenceA
j

if

A

j

[s; s+ t] � b

j

(t); 8 s; t > 0: (1)

Different traffic models parameterize different constraint
functionsb(t). For example, the(�; �) or leaky-bucket traffic
model [1] defines a constraint functionb(t) = � + �t so that
a source is allowed to send a burst of size� bits in an arbitrar-
ily small interval, but over longer interval lengths, the source is
constrained to an upper-average rate of� bits-per-second.

We introduced a more accurate traffic model, termed D-BIND,
in [2] to better characterize the burstiness properties of realis-
tic traffic streams. With the D-BIND model, sources character-
ize their traffic to the network via multiple rate-interval pairs,
(R

k

; I

k

), where a rateR
k

is a bounding or worst-case rate over
every interval of lengthI

k

. With P rate-interval pairs, the model
parameterizes a piece-wise linear constraint function with P lin-
ear segments given by

b(t) =

R
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(t� I
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) +R
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< t � I

k

(2)
with I

0

= 0. We also showed how this source characterization
captures a stream’s burstiness properties and temporal correlation
structure, even over long time scales [2] . For example, withan
MPEG-compressed video source, the stream’s pattern of alter-
nation between large intra-coded frames and smaller inter-coded
frames is evident from the values of the rate-interval pairs.

In [4], a (~�; ~�) model is considered along with the above traf-
fic models. This model consists ofP (�

k

; �

k

) leaky buckets in
parallel such that the resulting constraint function is piece-wise
linearconcavewith P linear segments:

b(t) = min

1�k�P

(�

k

+ �

k

t): (3)

2



The (~�; ~�) model is therefore a special case of the D-BIND
model.

All of the above deterministic traffic models have the property
that they are enforceable by the network so that when a client
specifies its traffic parameters to the network, the network can
verify that these parameters are satisfied via policing elements
such as multi-level leaky buckets [1]. As illustrated in Figure 1,
regardless of the traffic stream’s arrival pattern at the entrance
of the policer, by delaying or dropping packets that violatethe
traffic parameters specified by the client, the network is assured
that Equation (1) is satisfied at the output of the policer.

jb (t)
Arrivals network

A [s,s+t] < b (t)jjPolicer

Figure 1: Policing of the Traffic Constraint Functionb
j

(t)

While a deterministic service has important advantages in
terms of the strength of the guarantee itself as well as the en-
forceability of the traffic specification, it can have a significant
limitation in terms of the achievable utilization of the network’s
resources. We showed in [4], that when MPEG-compressed ac-
tion movie videos with multiple time scale rate variations obtain
a deterministic QoS guarantee, the utilization of the multiplexer
is limited to 30% for delay bounds less than 100 msec.

2.2 Statistical Service

A statistical network service provides a probabilistic performance
guarantee; it achieves a statistical multiplexing gain by exploiting
stochastic properties of individual traffic streams as wellas statis-
tical independence among streams. However, strong assumptions
on the stochastic properties of traffic streams are inherently diffi-
cult for the network to enforce or police. For example, consider
a Markovian source: in real time, it is impractical to determine
whether a stream is following a certain transition matrix, is close
enough to its implied marginal distribution, or has the required
autocorrelation structure. Consequently, if a particularapplica-
tion does not conform to the chosen stochastic model, no guaran-
tees can be made. Moreover, if admitted to the network, such a
stream could adversely affect the performance of other applica-
tions if it is statistically multiplexed with them.

In this paper, we focus on providing statistical services using
enforceable deterministic traffic models.

3 Enforceable QoS Guarantees
In this section, we introduce techniques for obtaining stochas-
tic envelopes of traffic streams from their policeable parameters
in order to achieve a statistical multiplexing gain and provide a
network-enforceable statistical service.

3.1 Extracted Stochastic Envelopes

The stochastic envelope that we consider in this paper is the
rate-variance envelopeRV

j

(t) which describes the variance of

a stream’s arrival rate over intervals of lengtht [9]:

RV

j

(t) = V ar

�

A

j

[s; s+ t]

t

�

: (4)

This characterization captures the second moment correlation
structure of an arrival process in the same way as an autocorrela-
tion function or a variance-time characterization used in [18]. We
use theRV

j

(t) characterization simply because it relates more
directly to admission control. Additionally, we restrict ourselves
to a second moment envelope rather than considering, for exam-
ple, envelopes of distributions or moment generating functions,
in order to devise an admission control algorithm that is compu-
tationally simple as well as highly accurate.

We now present two methods for obtainingRV
j

(t) from the
deterministic envelopeb

j

(t): adversarialmode in which the rate-
variance envelope is upper bounded, andnon-adversarialmode
in which it is approximated for policed but non-worst-case traffic.
We refer to the respective envelopes asRV

�

j

(t) (adversarial) and
d

RV

j

(t) (non-adversarial).

3.2 Adversarial Mode
Here, we derive a bound on the rate-variance envelope of a de-
terministically policed stream. We refer to this as “adversarial
mode” for mappingb

j

(t) toRV �
j

(t), since by bounding the rate-
variance envelope, the network is assured that regardless of the
behavior of the original source, the stochastic envelope atthe po-
licer’s output is upper bounded. Together with the appropriate
admission control algorithm, the enforceableRV �

j

(t) character-
ization provides a mechanism for delivering a statistical service
that is able to extract a statistical multiplexing gain evenif all
sources are independently adversarial, i.e., if sources are adver-
sarial, but not collusive.

The following proposition shows how a stream’s stochastic
envelope can be upper bounded from the parameters of the polic-
ing elements.

Proposition 1 If streamj is stationary and its arrivals are upper
bounded such thatA

j

[s; s + t] � b

j

(t) for all s, t> 0, then its
rate-variance envelope is upper bounded by:

RV

�

j

(t) �

�

j

b

j

(t)

t

� �

2

j

(5)

where�
j

is defined as:1

�

j

= lim

t!1

b

j

(t)

t

: (6)

Proof: Let the random variabler
j

(s) represent sourcej’s in-
stantaneous rate at times and leta

j

(t) represent the total arrivals
in an interval of lengtht,

a

j

(t) =

Z

s+t

s

r

j

(s) ds (7)

which depends only ont for stationary sources.

1For example, for a source parameterized by multiple(�

k

; �

k

) pairs
as in Equation (3),�

j

is simply the minimum of the�
k

’s.
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Denotingf
t;j

(x) as the distribution ofa
j

(t), we show that for
anyt, the maximal value ofRV

j

(t) = V ar(a

j

(t)=t) subject to
the constraints of the policing elements

Z

s+t

s

r

j

(s) ds � b

j

(t) 8s; t � 0 (8)

is given by Equation (5) and is attained when the distribution of
a

j

(t) is given by

f

�
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(x) =
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(t)� �
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t

b

j

(t)

�
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t

b
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(t)

�(x� b

j

(t)) (9)

such that for an interval lengtht, Equation (9) describes a bino-
mial distribution.

According to (8),f
t;j

(x) = 0 for x > b(t) andx < 0 so that
the rate-variance envelope of a policed stream is given by

RV

j
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Ea
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2

for some distributionf
t;j

(x) satisfying (8). For the distribution
f

�

t;j

(x) of Equation (9),RV �
j

(t) is given by Equation (5). To
show thatRV �

j

(t) � RV

j

(t) for all t and for all distributions
f

t;j

(x) satisfying (8), observe that
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since the mean rateEa

j

(t)=t is given by

1
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x dF
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Rewriting Equation (11),
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(t)� RV
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which is clearly non-negative.2
Proposition 1 applies to any deterministic traffic model since

each deterministic traffic model parameterizes a constraint func-
tion b

j

(t) as described in Section 2.1; the more accurately the
model characterizes the traffic stream, the tighter the correspond-
ing bound onRV �

j

(t).
We also note that for an adversarial source to realize the vari-

ance bound at a time-scaleT , it would first transmit its maximal
burst such thatA

j

[0; t] = b

j

(t) for t � T . Next, the source
would remain idle in order to obtain enough credits or tokens
from the policer to send this same burst of sizeb

j

(T ) again.
This is different than a “greedy” source defined in [19] which
always transmits a packet when allowed to do so by the policer
and never remains idle to collect tokens; for a greedy source,
A

j

[0; t] = b

j

(t) for all t. For example, consider a(�; �) source
with b

j

(t) = �

j

+ �

j

t. A greedy source would send a burst

of size�
j

bits at t = 0 and then send traffic at constant rate
�

j

for the remainder of the connection’s lifetime. In contrast, a
source that alternately sends bursts of size�

j

and remains idle for
a time�

j

=�

j

has the same mean but greater variance and hence is
more adversarial for statistical multiplexing. The admission con-
trol test of Section 4 shows how rate variation at different time
scales leads to an increased loss probability and delay-bound vi-
olation probability.

3.3 Non-Adversarial Mode
By upper bounding the stochastic envelope of policed traffic
streams as in Proposition 1, a statistical service can be provided
even in the case that all traffic streams are independently adver-
sarial. Below, we show how this same rate-variance envelopecan
beapproximatedfor policed arrival streams. In other words, we
derive an expression fordRV

j

(t) to describe the envelope of a
non-adversarial policed stream that satisfies Inequality (1).

Proposition 2 If streamj is stationary and its arrivals are upper
bounded such thatA

j

[s; s + t] � b

j

(t) for all s, t> 0, then its
rate-variance envelope is approximately:

d

RV

j

(t) �

�

j

b

j

(t) � t�

2

j

12t

(12)

where�
j

is defined by Equation (6).

Proof: A deterministic traffic constraint functionb
j

(t) bounds
the worst-case arrivals of connectionj. On a time scaleT , a burst
of sizeb

j

(T ) is the largest-sized burst allowed by the policer. But
what is the probability or fraction of time that the source transmits
such bursts? In Proposition 1, the rate-variance envelope bound
RV

�

j

(T ) is realized when a source sends the worst-case burst at
time scaleT as often as possible subject to the policer constraints,
namely, when the source achieves

Probfa

j

(t) = b

j

(t)g �

�

j

t

b

j

(t)

: (13)

Contrastly, we define a “non-adversarial” policed traffic
stream as one in whicĥa

j

(t) can take on values across its entire
policeable range[0; b

j

(t)] rather than only its extreme values, 0
andb

j

(t), that is,

^

f

t;j

(x) > 0; 0 � x � b

j

(t): (14)

In particular, denoting a uniform distribution on[x
1

; x

2

] as
U [x

1

; x

2

] we define the distribution of̂a
j

(t) as

â
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t] w:p:
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t

b

j

(t)

(15)

so thatdRV
j

(t) is given by Equation (12).2
In other words, with probability�

j

t=b

j

(t), â
j

(t) is distributed
uniformly between 0 and the mean number of bits in intervals of
lengtht, �

j

t; and with probability1 � �

j

t=b

j

(t) it is uniformly
distributed between the mean and the maximum,b

j

(t).
Importantly, we note that while Equation (15) is that of a

weighted uniform distribution, this arrival characterization has no
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relationship to a “uniform” source in the traditional sense, i.e., a
source withiid uniform interarrival times. In contrast, the rate-
variance envelopes of Propositions 1 and 2 allow for an arbitrary
autocorrelation structure over any time scales. The exact form of
RV (t) will depend on the traffic model used to bound the arrival
stream and the parameter values for that particular stream.

Finally, by comparing Equations (5) and (12) we notice the
relationship betweenRV �

j

(t) anddRV
j

(t). This is due to the re-
lationship between an extremal distribution which takes onvalues
of 0 andb

j

(t) and the weighted uniform distribution.

3.4 Example Envelopes

Figure 2 illustrates the rate-variance envelopes obtainedfrom
Propositions 1 and 2 for the MPEG-compressed video trace de-
scribed in Section 5. The curve labeled “ActualRV (t)” is the
true rate-variance envelope as directly computed from the trace
as in [9]. To obtain the “Adversarial Mode” and “Non-adversarial
Mode” envelopes, we first calculate the deterministic parameters
of the source. In particular, we characterize the source with 6
rate-interval pairs using the D-BIND traffic model [2]. These
rate-interval pairs, which are policeable by the network, parame-
terize a traffic constraint function as given by Equation (2), from
whichRV �

j

(t) is calculated using Proposition 1 anddRV
j

(t) us-
ing Proposition 2.

Non-adversarial Mode
RV(t)

Adversarial Mode
RV (t)*
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Figure 2: Envelopes from Video Trace

We make the following observations about the figure. First,
the trace itself exhibits a non-trivial autocorrelation structure,
even over relatively long time scales. This can be seen from the
slope of theRV (t) curve as depicted on the figure’s log-log scale:
if arrivals in successive intervals of lengtht are uncorrelated, then
the slope of this curve would be -1 att. However, the curve for
the actual source has a slope considerably greater than -1 even for
larget. Second, we observe that both of the inferred envelopes,
RV

�

(t) anddRV (t) exhibit this same behavior, i.e., they reflect
the long-time-scale characteristics of the source. This indicates
that even deterministic traffic models are capable of capturing the
stochastic properties of sources that exhibit rate variations over
multiple time scales. Finally, we observe that the non-adversarial
mode rate-variance envelopedRV (t) is quite close to the stream’s
actual envelopeRV (t). Thus, even Proposition 2’s simple map-

ping from policeable deterministic parameters to a stochastic en-
velope is able to approximately characterize the complex dynam-
ics and autocorrelation structure of this highly bursty trace.

4 Admission Control for Policed
Streams

Here, we describe an admission control test for policed streams
multiplexed at a Static Priority scheduler. In particular,we show
how to determine packet loss or delay bound violation probabil-
ity as a function of the streams’ rate-variance envelopes, which
in turn can be calculated from the parameters of the policingel-
ements using Propositions 1 and 2. While we focus on a single
multiplexer, our approach is applicable across multiple network
nodes using techniques from [17]. For example, if traffic streams
are reshaped at each network node as in [20, 21], a stream’s de-
terministic envelopeb

j

(t) is reconstructed, and hence so is its
inferred rate-variance envelope.

A rate-controlled static priority scheduler [21] consistsof per-
stream rate controllers and a number of prioritized FCFS queues
(Figure 3). Each stream is assigned a priorityp at connection
setup time based on its requested QoS, including whether it re-
quires deterministic or statistical service, and on the requested
delay bound. Additionally, packets are rate controlled (and hence
policed) before being queued to ensure that each stream con-
forms to its specified deterministic parameters, namely, its en-
velopeb

j

(t).

stat.
service

determ.
service

det_1

stat_m

stat_1

det_m

link

}

}

} other
services

N per-stream

rate-controllers

Figure 3: Static Priority Scheduler

As shown in Figure 3, such a scheduler can provide both de-
terministic and statistical performance guarantees as well as other
services. Priority levelsdet 1 throughdet m providem deter-
ministic delay bounds fromd

det 1

up tod
det m

. Priority levels
stat 1 throughstat m providem statistically guaranteed delay
bounds fromd

stat 1

up tod
stat m

. Connections utilizing the sta-
tistical service obtain guarantees on the loss and delay-bound vi-
olationprobabilitieswhereas connections utilizing the determin-
istic service obtain absolute bounds on delay and loss. Thus, our
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approach provides uniform semantics for delivering QoS guaran-
tees, allowing all traffic streams to use the same policeabletraf-
fic specification, regardless of the service they obtain. Admission
control tests that support connections utilizing a deterministic ser-
vice can be found in [4]. At the lower priority levels, other ser-
vices can be provided, including measurement-basedservices and
best-effort service.

DenotingRV
p;j

(t) as the rate-variance envelope of sourcej

at priority levelp, the delay bound violation probability at levelp
for a static priority scheduler with capacityC is approximately

PfD

p

> d

p

g � max

0�t��

p

1

p

2�

exp

�

�(C(t+ d

p

) � �

t;p

)

2

2�

2

t;p

�

(16)
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Equation (16) uses [9] together with a well-known approxima-
tion for the tail of a Gaussian distribution. The key technique
in its derivation is the analysis of the traffic and buffer dynamics
within a busy period, which has a duration bounded by Equation
(17). Moreover, with a heavy traffic approximation,

P

j

a

j

(t) ap-
proaches a Gaussian distribution with mean

P

j

�

j

t and variance
P

j

t

2

RV

j

(t). The test then considers that buffer overflows and
delay-bound violations can occur at any time-scale up to themax-
imal busy period. In [9], we experimentally found Equation (16)
to be highly accurate in predicting the performance of a buffered
priority multiplexer.

Notice that the probability of delay-bound violation is strictly
increasing withRV

j

(t), so that by considering the maximal rate-
variance envelopeRV �

j

(t) of each policed source (as in Propo-
sition 1), our estimate of this probability is also maximized. Fi-
nally, we note that for both adversarial and non-adversarial allo-
cation, traffic streams must be statistically independent or non-
collusive. If traffic streams are collusive, then a fully determinis-
tic approach must be employed [4].

5 Experimental Investigations

In this section, we evaluate our proposed scheme for provisioning
enforceable statistical QoS guarantees via a set of trace-driven
experiments. With an implementation of the proposed resource
reservation scheme of Sections 3 and 4, we compare the streams’
performance obtained in trace-driven simulations with that pre-
dicted by the admission control tests andRV (t) traffic character-
izations.

5.1 Experimental Scenario
The workload consists of a 30 minute trace of MPEG-compressed
video taken from an action movie. It was digitized to 384
by 288 pixels and compressed with constant-quality MPEG
1 compression at 24 frames per second with frame pattern
IBBPBBPBBPBB. Further details of the trace and its character-
istics may be found in [22].

For each simulation,N streams or traces are multiplexed on a
simulated 45 Mbps first-come-first-serve link, with each stream’s
arrival pattern given by the movie trace with a start time chosen
uniformly over the length of the trace (30 minutes). For a given
number of connectionsN and buffer sizeC � d (the link capac-
ity times the delay bound) we measure the fraction of packets"

that are dropped due to buffer overflow. Many simulations are
performed with independent start times and average resultsare
reported.

In the admission control part of the experiments, we deter-
mine the streams’ rate-variance envelopes from their enforceable
deterministic parameters as described in Section 3 and depicted
in Figure 2. We then use the admission control test of Section
4 to determine the maximum number of admissible connections,
N , subject to the QoS constraints for delay,d, and loss probabil-
ity, ".

5.2 Results
Here, we compare the results of the trace-driven simulations with
the admission control tests. To further evaluate our approach, we
also compare with the admission control algorithm of [12].

Figure 4 shows the results of the trace-driven simulation and
admission control experiments.2 The figure shows the average
utilization of the multiplexer (which is proportional to the num-
ber of connections asN�=C) versus buffer size scaled to delay.
In other words, for a given delayd depicted on the horizontal
axis, the vertical axis shows shows the maximum number of con-
nectionsN (scaled to utilization) that can be multiplexed such
that all connections are guaranteed a probability of delay-bound
violation or buffer overflow of10�3 in Figure 4(a) and10�6 in
Figure 4(b).

In the figures, four curves are depicted (from top to bottom):
(1) the results of the trace-driven simulation; (2) admission con-
trol tests based on theNon-Adversarial ModedRV (t) traffic char-
acterization of Proposition 2 (an approximate rate-variance enve-
lope for a non-adversarial, but policed, traffic stream); (3) admis-
sion control tests based on theAdversarial ModeRV �(t) traffic
characterization of Proposition 1 (the worst-case rate-variance en-
velope of a policed stream); and (4) the admission control test of
[12].

Trace-driven Simulation - For the simulation curves of Fig-
ures 4(a) and 4(b), the average utilization of the multiplexer, and
hence the number of multiplexed connections, increases with in-
creasing delay or buffer size. However, notice that increasing the
buffer size beyond that of a 10 to 20 msec delay is of little benefit,
i.e., larger buffers will not provide a better QoS or supportmore
connections for a given QoS. Regardless, the utilizations are in

295% confidence intervals for the simulations are all within asingle
connection and are therefore not shown.
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Figure 4: Utilization vs. Delay Bound

the range of 79% to 92% (61 to 72 connections on the simulated
45 Mbps link) for" = 10

�3, and in the range of 64% to 88% (49
to 68 connections) for" = 10

�6. Such high utilizations indicate
that these MPEG streams are well suited to statistical multiplex-
ing, despite their burstiness over multiple time-scales.

Non-Adversarial Mode Admission Control - The second
curve from the top depicts the admission control experiments
that use thedRV (t) characterization for non-adversarial policed
streams. Notice that the non-adversarial-mode curves are quite
close to those of the trace-driven simulation, indicating that with
only knowledge of the streams’ deterministic parameters (in this
case, six worst-case rate-interval pairs), the scheme of Proposi-
tion 2 is able to deliver a statistical service that exploitsnearly all
of the achievable statistical multiplexing gain.

Adversarial Mode Admission Control - The third curve
shows the results of the admission control experiments using the
RV

�

(t) bound on a policed stream’s rate-variance envelope. As
described in Proposition 1,RV �(t) boundsthe stochastic prop-
erties of policed streams so that statistical QoS guarantees can be
provided even if all streams are independently adversarial. Con-
sequently, theRV �(t) envelope is necessarily more pessimistic
than thedRV (t) envelope for non-worst-case policed streams (cf.
Figure 2) so that the adversarial-mode scheme captures some, but
not all, of the possible statistical multiplexing gain. Itsutiliza-
tions are 38% to 64% (" = 10

�3) and 23% to 48% (" = 10

�6)
for delays between 1 and 50 msec, utilizations that are consider-
ably below that of the trace-driven simulation. However, despite
not capturing all of the multiplexing gain, this scheme doeshave
a distinct advantage in terms of protection: if there were many
adversarialsources rather than MPEG video sources (the MPEG
trace is bursty, but not worst-case), then the adversarial mode ser-
vice is still able to deliver a rigorous statistical QoS guarantee.

EMW95 Admission Control - The final curve depicts admis-
sion control experiments based on [12]. Here, the trace is charac-
terized using the dual leaky bucket model with a peak rate of 5.87
Mbps, a maximum burst time (T

on

) of 41.7 msec, and an upper
average rate� of 1.98 Mbps. The test assumes that sources trans-
mit traffic according to an extremal periodic on-off model with
these parameters. As shown, the test is quite conservative limiting

utilization of the multiplexer to 12% to 22% for delays less than
50 msec and loss probabilities less than10

�3. Moreover, for the
smaller loss probability of" = 10

�6 in Figure 4(b), the admis-
sion control test of [12] deemed the situation “non-statistically-
multiplexable” so that the admissible region shown in the fig-
ure is that of the deterministic (no-loss case) as computed in [1].
The primary reasons for this conservatism are two-fold. First,
the dual-leaky bucket traffic model captures only a single time
scale of the source, and characterizing such highly bursty traffic
streams as compressed video with an on-off model is necessarily
restrictive [23]. While one could capture longer time scalebe-
havior by characterizing the source with a smaller value of� and
a largerT

on

, the values ofT
on

required to significantly reduce�
are so large that performance gains are not achieved. Second, in
[9], we showed that resource allocation using Equation (16)and
rate-variance envelopes can be highly effective for sources with
rate variations over multiple time scales; this approach eliminates
the need for a number of conservative approximations in [12].

6 Conclusions

Providing statistical performance guarantees in networksencoun-
ters a conflicting requirement between the need to obtain a statis-
tical multiplexing gain, which often engenders the use of astatis-
tical traffic model, and the need to police traffic streams, which
necessitates adeterministictraffic model. In this paper, we in-
troduced a new approach for delivering a statistical service that
extracts a traffic stream’s stochastic envelope from its network-
enforceable deterministic parameters. We first showed how to
bound a policed stream’s rate-variance envelope to providea sta-
tistical service and achieve a statistical multiplexing gain even in
the case that all traffic sources are independently adversarial. We
then showed how to approximate this same rate-variance enve-
lope for perhaps the more typical case of policed, but non-worst-
case traffic streams; this latter approach allows the network to
exploit a further statistical multiplexing gain when multiplexing
non-adversarial sources. The key components of our approach
are (1) simple-to-compute mechanisms to bound and approximate

7



stochastic envelopes from enforceable deterministic parameters,
(2) use of an accurate deterministic model to characterize the im-
portant properties of the traffic, and (3) stochastic envelope based
admission control tests for buffered, priority multiplexers. Evalu-
ations of our approach with experiments using compressed video
traces showed that the scheme is able to achieve a substantial sta-
tistical multiplexing gain.
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