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Abstract— In multi-hop networks, packet schedulers at downstream
nodes have an opportunity to make up for excessive latencies due to con-
gestion at upstream nodes. Similarly, when packets incur low delays at
upstream nodes, downstream nodes can reduce priority and schedule other
packets first. The goal of this paper is to define a framework for design
and analysis of Coordinated Multihop Scheduling (CMS) which exploit such
inter-node coordination. We first provide a general CMS definition which
enables us to classify a number of schedulers from the literature including,
G-EDF, FIFO+, CEDF, and work-conserving CJVC as examples of CMS
schedulers. We then develop a distributed theory of traffic envelopes which
enables us to derive end-to-end statistical admission control conditions for
CMS schedulers. We show that CMS schedulers are able to limit traffic
distortion to within a narrow range resulting in improved end-to-end per-
formance and more efficient resource utilization. Consequently, our tech-
nique exploits statistical resource sharing among flows, classes, and nodes,
and our results provide the first statistical multi-node multi-class admission
control algorithm for networks of work conserving servers.

I. INTRODUCTION

During periods of congestion, a flow or class’ end-to-end per-
formance properties are strongly influenced by the choice of the
packet scheduling algorithm employed at the network’s routers.
Consequently, recent advances in scheduler design can ensure
properties such as fairness, performance differentiation, and per-
formance isolation [3], [13], [15], [26]. Moreover, such perfor-
mance properties are now achievable in high speed implemen-
tations [24], [30], [32] and scalable architectures in which core
nodes do not maintain per-flow state [6], [25], [33].

Exploiting these scheduling mechanisms, admission control
can limit congestion levels so that (for example) targeted la-
tencies and throughputs are ensured, thereby providing services
with predictable and controlled performance levels [22]. For
example, statistical class-based admission control tests have
been derived for Earliest Deadline First (EDF) [4], [27], [31],
Weighted Fair Queueing (WFQ) [12], [27], [38], Strict Priority
[27], and Virtual Clock [20]. Moreover, techniques for provid-
ing multi-node or end-to-end statistical services have been de-
veloped for several classes of non-work-conserving schedulers
[5], [28], [31], [37] and for Weighted Fair Queueing networks
with isolation among flows [38].1

However, in both the data plane (scheduling) and control
plane (admission control), none of the aforementioned tech-
niques exploit a key property of multihop networks, namely, that
a downstream node can compensate for excessive latency or un-
fairness incurred at an upstream node. Nor will downstream
nodes reduce the priority of a packet which arrives ahead of
schedule due to a lack of congestion upstream. In contrast, a
number of service disciplines in the literature have been pro-
posed which do exploit this property, which we refer to as co-
ordination. Examples include the oldest customer first service
discipline [8], global earliest deadline first (G-EDF) [8], mod-
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That is, a statistical multiplexing among flows is not considered.

ified first-in-first-out (FIFO+) [10], and coordinated earliest-
deadline-first (CEDF) [1], [2].

The contributions of this paper are twofold. First, we devise
a general framework for design and specification of a class of
service disciplines which we refer to as Coordinated Multihop
Schedulers (CMS). The key CMS property is that a packet’s
priority index at a downstream node is recursively expressed
through the priority index of the same packet at the previous
node, and therefore is a function of the packet’s (perhaps vir-
tual) entrance time into the network. We show that a broad class
of schedulers from the literature, including CEDF, FIFO+, and
others, can be characterized by this recursion and belong to the
CMS class. We make several observations regarding coordi-
nated multihop schedulers. (1) The well known traffic distortion
problem, in which provisioning of end-to-end services is ham-
pered by complex traffic distortions due to multiplexing, e.g.,
[11], [23], can be addressed. (2) CMS inter-server cooperation
can improve a flow’s end-to-end performance, and consequently,
improve the efficiency and utilization of the network at large.
(3) They can be core-stateless, in some cases quite trivially, and
therefore can share the same scalability properties of architec-
tures in which core nodes do not maintain per-flow state [33].

Our second contribution is to devise a general theory for sta-
tistical analysis and admission control of coordinated servers.
Our key technique is to devise a framework for end-to-end ser-
vice provisioning that exploits the structural properties of co-
ordinated multihop schedulers, thereby overcoming the traffic
distortion problem and realizing the efficiency gains of coordi-
nation. To analyze CMS networks, we introduce the concept of
essential traffic, which is the traffic that must be served before
a time instant such that no local service violations will occur at
that time. Using this concept and building on the inter-class the-
ory of [27], we derive expressions for the essential traffic and
service envelopes, which provide a general statistical character-
ization of a CMS node’s workload and service capacity. Within
this framework, we establish an important property of the CMS
discipline, namely, that traffic distortion in CMS networks is
limited to within a narrow range. Therefore, the essential traf-
fic and service envelopes at a CMS node can be evaluated as
simple and minimally distorted functions of the flows’ original
(undistorted) traffic envelopes that characterized traffic before
entrance into the network. We then derive CMS admission con-
trol conditions by transforming the problem of evaluating the
service-violation probability into the problem of computing the
essential traffic envelope and the essential service envelope.

Previous techniques for multi-node admission control include
studies of non-work-conserving schedulers which shape and re-
shape traffic [5], [17], [18], [28], [31], [36], [37]. While such
schemes can have good performance properties, they require
per-flow traffic processing in core nodes and do not exploit the
coordination property. For work-conserving service disciplines,
a key issue is traffic distortion. Previous approaches include
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bounding this distortion [7], [11], [23], [35] and exploiting iso-
lation properties of GPS servers [14], [19], [26], [38]. While
such techniques are important for their generality, we will show
that they can be conservative in practice. In contrast, our work
develops a general framework for end-to-end services in CMS
networks. Our solution applies to the broad class of (work-
conserving) CMS servers, exploits the efficiency gains of co-
ordination, and provides an end-to-end admission control al-
gorithm that is quite general and achieves high utilization for
multi-class multi-node services.

The remainder of this paper is organized as follows. In Sec-
tion

�
, we define the CMS discipline and show how schedul-

ing algorithms from the literature can be classified within the
CMS framework. Next, in Section � we develop a general the-
ory for analysis and admission control for statistical end-to-end
services. Finally, in Section � , we provide admission control
results obtained by simulations and numerical analysis, and in
Section � we conclude.

II. FRAMEWORK FOR COORDINATED SCHEDULING

In this section, we provide a formal definition of the CMS
coordination property. We then use this definition to show how
a number of schedulers from the literature possess this property
so that our admission control tests derived in Section III apply
to a broad class of schedulers.

A. CMS Definition

Denote ����	� 
 as the priority index assigned to the �
��� packet
of flow- � with size � �� at its � ��� hop. Moreover, let � �� denote
the time when the � ��� packet of flow � arrives at its first hop.
Finally, let � ��	� 
 denote the increment of the priority index of the� ��� packet of flow � at its � ��� hop.2

Definition 1 (Coordinated Multihop Scheduling) Consider a
multiplexer which services packets in increasing order of their
priority indexes. A scheduler possesses the CMS property if the
priority index of packet � of flow � at its � ��� hop can be ex-
pressed as

� ���� 
�� � ����	� ��� ����	� ��� � �! � ���� 
#"$� � � ��	� 
 � �&%  (1)

where � ���� 
 is a non-negative function of � � � � � �� � � ���� � � and � � "'���� � ,
and for �)( �

, the priority increments satisfy � ��	� 
+*-, � �	� 
/.0 ��� 
 � � �	� 
 � 0 �	� 
#1 , 2'�&(  , for some constants � �	� 
 and 0 �	� 
 .
In other words, at the first node, the priority index is added to

the packet’s arrival time, and the index may be a constant, or a
function of the packet’s arrival time, the packet size, the prior-
ity index of the flow’s previous packet, or constants associated
with the flow and/or node. In contrast, at downstream nodes, the
priority index is computed recursively as a function of the up-
stream index rather than by using the local arrival time. More-
over, while this downstream index can also be dynamic, it must
be bounded within a range such that � ���� 
 *3, � ��� 
 . 0 ��� 
 � � �	� 
 � 0 ��� 
 1 .

Observe that the requirement that � ���� 
 is a function of � , � ,
� �� , � ��	� � , and � � "$��	� � can be interpreted as meaning that the priority
index of flow- � ’s � ��� packet at its � ��� hop can be determined4

Notation is summarized in Table 1.

when the packet first enters the network. Consequently, FIFO,
EDF, WFQ, and Virtual Clock are not coordinated schedulers.
For example, the priority index assigned by FIFO can be written
as � ���� 
5� � ��	� 
 , where � ���� 
 is the arrival time of the � ��� packet of
flow � at its �6��� hop. For �7%  , ������ 
 cannot be determined when
the packet arrives at its first hop. Similarly, for Virtual Clock,

the priority index can be written as � ���� 
8�:97;�<>= � ��	� 
 � � � "'���� 
@? �BADCEF E .
However, for �G%  , �
��	� 
 depends on the arrival time of the �
���
packet of flow � at its � ��� hop, and cannot be determined when
the packet arrives at its first hop.

Based on the selected method for assigning the increments of
the priority index, we sub-classify CMS service disciplines into
delay- and rate-CMS. A service discipline belongs to the delay-
CMS class if � ���� 
 represents a delay parameter of the � ��� packet
of flow � at its � ��� hop. For example, this delay parameter can
be simply a local delay bound, or for other service disciplines
(described below), can be a function of packet � ’s delay relative
to the scheduler’s mean delay.

In contrast, a service discipline belongs to rate-CMS class if� ���� 
 is a function of � �� and H ��� 
 , where � �� is the size of the � ���
packet of flow � and H ��� 
 is the reserved bandwidth for flow � at
its � ��� hop. The main characteristic of this class is that reserved
bandwidths rather than delay bounds determine the service pri-
ority. Below we also describe examples of schedulers belonging
to the rate-CMS class.

B. Discussion

The key property of the CMS discipline is that the priority
index of each packet at a downstream server depends on its pri-
ority index at upstream servers, so that all servers in the network
cooperate to provide the end-to-end service. For example, if a
packet violates a local deadline at an upstream server, down-
stream nodes will increase the packet’s priority thereby increas-
ing the likelihood that the packet will meet its end-to-end delay
bound. Similarly, if a packet arrives “early” due to a lack of con-
gestion upstream, downstream nodes will reduce the priority of
the packet.

To illustrate this property, consider the simple example of
Figure 1 in which three packets of flow � arrive to the net-
work at � �JI �  � � respectively, and traverse two hops with� ���� �K� � ��	� L5� � � � . In the example, all packets have identical
size, the link speed is 1 packet per time unit, and cross traffic
exists at both hops. At the first hop, these three packets are as-
signed priority indexes (deadlines) of 5, 6, and 7 respectively,
by both CMS and EDF. Suppose further that these three packets
depart from the first hop at times 3, 4, and 10 respectively, so
that the the third packet misses its local deadline by 3 time units
due to cross traffic with higher priority. According to the arrival
times at the second hop, these three packets are assigned prior-
ity indexes of 8, 9, and 15 by EDF, whereas the indexes are 10,
11, and 12 for CMS. In the example, with further cross traffic at
the second hop, the third packet has higher priority in the CMS
network than the EDF network, and therefore is able to meet
both its local delay bound and global delay bound. In contrast,
in the EDF network, the third packet meets its local delay bound
at the second hop, but is not able to “catch up”, and meet its
end-to-end delay bound.
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Fig. 1. Illustration of Coordination

C. Example CMS Disciplines

The above definition of Coordinated Multihop Scheduling
is quite general. Here, we show how several service disci-
plines from the literature, including G-EDF [8], FIFO+ [10],
CJVC [34], and CEDF [1], [2] can be classified as instances of
the CMS discipline.

C.1 Global EDF

The Global Earliest Deadline First (G-EDF) service discipline
was introduced in [8] to address the problem that reconstruction
of continuous speech from voice packets is complicated by vari-
able delays of packets due to multiplexing. In G-EDF, the prior-
ity index for a packet with age (time in network) � arriving at a
server at time � is defined as � ���������
	 . � . ��� , where �
���
	
is the maximum allowable entry-to-exit delay and � is the esti-
mated delay along the packet’s remaining route in the network.
If we rewrite the priority index assigned by G-EDF as:

� ��	� 
 � � ������ � ����� ���
	� .���� E��� L � ��� � � � � �) � ���� 
#"$� � � ��� 
 � �7%  (2)

where � � is the path length of flow � , and � ��� 
 is the expected
delay suffered by flow- � packets at its � ��� hop, then it is clear
that G-EDF is a delay-CMS discipline.

C.2 FIFO+

The modified first-in-first-out (FIFO+) service discipline [10]
assigns a packet’s priority index according to the difference be-
tween the average queueing delay seen by a packet and the
particular queueing delay suffered by the packet at upstream
servers. From the definition in [10], we can rewrite the recur-
sive FIFO+ priority index as:

� ���� 
 � � � ��	� � � � �) � ���� 
#"$� ���� �	� 
#"'� � �7%  (3)

where �� ��� 
#"$� is the average queueing delay of flow � seen by
the packet at the upstream server. Provided that �� �	� 
 ,� (  ,
is determined before the packet departs from its first hop and
that the range of �� is bounded, comparing Equation (3) with
Definition 1 shows that FIFO+ is also a delay-CMS discipline.

C.3 Work Conserving CJVC

Core-Jitter Virtual Clock (CJVC) was proposed in [34] as a
mechanism for achieving guaranteed service without per-flow

state in the network core. CJVC uses “dynamic packet state” to
store information in each packet header containing the eligible
time of the packet at the ingress router and a slack variable that
allows core routers to determine the local priority index of the
packet. For a work-conserving variant of CJVC, the priority
index of packet � of flow � at node � is given by:

� ��	� 
 �
� 97;�< = � ���� � � � � "$���� 
 ? � ADCEF E � � �) 
����	� 
#"'��� ADCEF E � 0 �� � �7%  (4)

where flow- � � ��� packet size and reserved bandwidth are given
by � �� and H � respectively, and 0 �� is the slack variable assigned
to the � ��� packet of flow � before it enters the network. Further-

more, it can be verified that ADCEF E � 0 �� * , � ��� 
 . 0 ��� 
 � � ��� 
 � 0 ��� 
 1
for �7%  , where � ��� 
 � A������E�� A�� E� EL F E and 0 �	� 
 � A!�"���E " A�� E! EL F E . Thus,

considering ����	� � � ADCEF E � 97;�< � I � � � "$��	� 
 . ���� � , it is clear that work-
conserving CJVC is a rate-CMS service discipline.

C.4 Coordinated EDF

In [1], [2], the Coordinated Earliest Deadline First (CEDF)
service discipline is developed with the goal of minimizing end-
to-end delays. The approach is to use EDF together with ran-
domization of packet injection time and coordination of servers.
There exist two ways to assign local deadline in CEDF service
discipline.

In [2], the priority indexes are assigned as

� ���� 
 � �$# �� ��% ��� � � � �  � ���� 
#"$� ��% ��� 
 � �&%  (5)

where
# �� is the token arrival time chosen uniformly at random

from interval , � � .  �'& � � �(& � � , & � � �*)�+-, E.0/ E21 , 3 � is the maximum
size of flow- � packets, 4 � is the rate of flow � , 5 is the utiliza-
tion factor, and % �	� 
 is a constant (expected local delay bound)
determined for the � ��� hop of flow � .

In [1], the priority indexes are assigned as

� ��	� 
 � 678
79
# �� �$:!; E "*< CE�� � CE>=@? EBA C�ED EFHG�C ? EBA F � � �  
� ���� 
#"$� � :!; E "*< CE � � CE =@? EBA I� D EFJG(C ? E@A F � �&%  � (6)

where & � is the end-to-end delay bound for flow � , # �� *3, � ���� � ��>�& � � is the arrival time of token for the � ��� packet of flow � (sim-
ilar to above), the K � 
 is the capacity of the server in the � ��� hop
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of flow � , and � � is the path length of flow � . Thus, both variants
of CEDF can be classified as delay-CMS disciplines in which
the first priority index is randomized.

III. CMS ANALYSIS AND ADMISSION CONTROL

In this section, we develop a statistical multi-node analysis
and admission control algorithm for CMS. We proceed in sev-
eral steps. First, we introduce two key concepts needed for anal-
ysis: essential traffic and essential service. These concepts en-
able us to statistically bound the traffic that must be serviced in
order to meet a flow’s local quality-of-service constraints. We
next show how the essential traffic at a downstream node can be
computed based on a simple and minimally distorted transfor-
mation of the traffic at the entrance of the network. This result
(Theorem 1) is a key to efficient end-to-end analysis. We then
derive an expression for the statistical service envelope (Theo-
rem 2): with this statistical description of service, we can char-
acterize and control statistical sharing across traffic classes. Fi-
nally, we derive an end-to-end admission control test for coordi-
nated schedulers (Theorem 3).

Throughout, we denote
� ��� 
 � ��� � � ��� � CEBA I�� � � �� as the total

traffic in , I � � 1 arriving from traffic flow � at its � ��� hop, a node
which is indexed by � � � � ��� . Without loss of generality, we
ignore propagation delays so that the departure traffic of flow� from server � � � � �(� is the arrival traffic of flow � to server� � � � � �  � . Similar to [27], we call a sequence of non nega-
tive random variables =�� � �	� � ?�
� �
� a statistical traffic envelope
of flow � if 2 � ��� % I 3

� � , � � � ��� 1 � �
��� � CEBA C���� � � � � ��� � �

����� � � � ��� � � (7)

and assume that
� � ,�� � � 1 and

� 
 ,�� � � 1 are independent and � � � � �
and � 
 � � � are independent if �� � � . Furthermore, we consider
a discrete time model with an infinite buffer in which traffic is
treated as fluid. We next review several facts about stochastic
ordering that is used later in this section.

Lemma 1: Let ! � � �"�#� � !%$ be independent and & � � �"�#� � &'$
be independent. If ! � � � � & � for � �! � �"�#� ��( , then
1. � $� � � ! � � � � � $� � � & �*)2. + . � $� � � ! � ( � � + . � $� � � & � for any real number + .
3. There exist independent random variables & � � �#�"� � &'$ such
that & � has the same distribution as & � and ! � � & � for � � � �#�"� �*( .
Proof: See [29]. ,
A. Essential Traffic

Here, we define essential traffic as a building block for analy-
sis of coordinated schedulers that enables us to accurately evalu-
ate a flow’s delay-bound-violation probability. In particular, for
a given local deadline - , all arriving traffic of server . arriving
in , I � � 1 can be virtually decomposed according to whether or not
its local deadline is later than - . As only the portion of traffic
with local deadline no later than time - affects the probability of
violating the local deadline - , we refer to this traffic as essential
traffic, which we formally define as follows./1032547698

(stochastic inequality) denotes :<; 0>=@?1AB2 :<; 8C=@?1A
for all

?
.

Term Definition� � � � �(� � ��� hop of flow �� � path length of flow �� ��	� 
 arrival time of the � ��� packet of flow � at
its � ��� hop� �� flow- �$� ��� packet size� ���� 
 increment of priority index of the � ��� packet of
flow � at its � ��� hop� ��� 
 mean value of � ���� 
0 �	� 
 range of � ���� 
 variance� ��� 
 � ��� total flow- � traffic at its � ��� hop during , I � ���� � �	� � flow � statistical traffic envelope at its first hop� � , - � � 1 total amount of flow- � traffic with priority index
in , - � � 1 , i.e., � ��� � CEBA C ��� � � � � � ��� � �	� � a random variable with the same distribution
as � � �	� ��ED�	� 
 � � � - � flow- � traffic with local deadline no later than -
arriving at server � � � � �(� during , I � ���F ��� G : ��� 
 = maximum tolerable local deadline violation of
flow � at server � � � � ���H ��� 
 �	� � flow � essential traffic envelope at its � ��� hopI ��� 
 � � � - � the amount of flow- � traffic with local deadline
at server � � � � ��� no later than - is discarded
before arriving at server � � � � ��� during , I � � 1H ��� 
 �	� � a random variable with the same distribution
as
H ��� 
 �	� �J ��� � � � flow � essential service envelope at its � ��� hop# � � � � - � void time of server . before time � related

to time -J ��� � � � a random variable with the same distribution
as
J �	� � � �K �� �	L � total traffic with local deadline no later than -

queued at server . at time L� �	� 
 flow � delay bound at its �6��� hop� ��� 
 � ��� (virtual) essential delay suffered by flow- �
traffic at its � ��� hop at time �5 ��� 
 upper bound on probability M = � ��� 
 � ��� % � �	� 
 ?

TABLE I

Definition 2 (Essential Traffic) The essential arrival traffic�ED��� 
 � � � - � of flow � at server � � � � �(� is defined as the total flow- �
traffic with local deadline no later than time - arriving at server� � � � ��� no later than � , i.e.,

� D��� 
 � � � - � � �
��� � CEBA I�� � � � CEBA I�� � � �

� ) (8)

Figure 2 illustrates the relationship among arrival traffic, es-
sential traffic, and departure traffic. If, for example, the priority
index increment for flow � at each hop is � , then flow- � ’s essen-
tial traffic

�5D�	� � � � � ��� is simply
� �	� � � � . � � at node 1. Suppose fur-

ther that some flow- � packets miss their local deadline at the first
hop. Then, according to Definition 2,

� ��� L � ��� will cross
�ED��� � � � � ���

as depicted in the figure. Next, ignoring propagation delay, the
departure traffic of node 1 is the arrival traffic at node 2. Since
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Fig. 2. Example of Arrival, Essential, and Departure Traffic (priority index increment =
�
)

at node 2, flow- � ’s arrival traffic has not missed its node-2 local
deadline upon arriving,

�5D�	� L � � � ��� � � �	� � � � . � � � . The key point
for Figure 2(b), is that the relationship between the arrival traffic� ��� L � ��� and the essential traffic

�5D��� L � � � ��� characterizes the advan-
tage of CMS’s coordination mechanism. In particular, the hor-
izontal distance between

� �	� L � ��� and
�5D�	� L � � � ��� corresponds with

the queueing delay incurred at node 1: the larger the queueing
delay, the shorter the horizontal distance, and the higher the re-
sulting priority index. Consequently, excessively delayed pack-
ets at upstream nodes can “catch up” at downstream nodes and
still satisfy their end-to-end deadline requirement.

B. Essential Traffic Envelope

In each server of CMS networks, packets are served in in-
creasing order of their priority indexes (local deadlines). For a
given - , flow- � ’s essential traffic

�5D��� 
 � � � - � must be characterized
to compute the local deadline - violation probability. Further-
more,

�ED��� 
 � - ��� � - � . �ED��� 
�� � � - � affects the probability of violat-
ing the local deadline by no more than � for a packet with local
deadline - arriving at server � � � � �(� during , � � - ��� 1 . Thus, we
define the essential traffic envelope as follows.

Definition 3 (Essential Traffic Envelope) A sequence of non-
negative random variables = H ��� 
 �	� � ? 
� � " 
 is an essential traffic
envelope of flow � at its � ��� hop if 2E- � � % I and 2 � such that- ��� ( � ,

� D�	� 
 � - ��� � - � . � D�	� 
 � � � - � � � � H ��� 
 � - . ��� ) (9)

A key challenge for provisioning multi-node services is char-
acterizing the traffic at downstream servers. The difficulty is
due to the fact that a flow’s traffic is unavoidably distorted after
multiplexing with other flows. Furthermore, the traffic distor-
tion may be accumulated along the path of a flow in networks
without coordinated scheduling disciplines. However, due to the
coordination property, the accumulated distortion phenomenon
of the essential traffic is mitigated. In networks with coordi-
nated scheduling, the distortion of a flow’s essential traffic after
passing through a server depends only on the local deadline vio-
lation. If the flow’s traffic does not violate its local deadlines, the
distortion of the essential traffic is eliminated, even if the flow’s
traffic incurs a queueing delay. The following theorem precisely
characterizes this advantage of the coordination property.

Let
F ��� G : ��� 
 = denote the maximum tolerable local deadline vi-

olation of flow- � traffic at server � � � � �(� . That is, a flow- � packet
will be discarded if it misses its local deadline at server � � � � �(�

by more than
F �	� G : �	� 
 = . Let

I �	� 
 � � � - � denote the amount of flow-� traffic with local deadline at server � � � � �(� no later than - that
is discarded during , I � � 1 before arriving at server � � � � �(� .

Theorem 1: An essential traffic envelope
H ��� 
 �	� � of flow � at

its � ��� hop is given by

H �	� 
 ��� � � � � ��� . � ��� 
 � & �	� 
 � F ��� G : ��� 
#"$� = � � (10)

where & �	� 
 � 0 ��� 
 � � � 
#"$�� � L 0 ��� � .Proof: To relate a flow’s downstream essential traffic to its
original arrival envelope, we statistically upper bound

� D�	� 
2� - �
� � - � and lower bound

�5D��� 
 � � � - � .
Let � � � � �(� � . . For all � � -5% I and � such that - ��� ( � ,

consider the interval , � � - ��� 1 . Without loss of generality, as-
sume that there is at least one flow- � packet with local deadline
no later than - arriving at server . during , � � - ��� 1 . Other-
wise,

�ED�	� 
 � - ��� � - � . �ED�	� 
 � � � - � � I , a trivial case. Since for
a given flow � , packets are always serviced in increasing order
of their local deadlines, all flow- � packets arriving at server .
before time � have local deadlines no later than - . According to
Definition 2 and the definition of

I �	� 
 � - ��� � - � , we have

� D��� 
 � - ��� � - � � I ��� 
 � - ��� � - � � �
��� � CEBA I � � � �

� ) (11)

Since ������ 
 � � ���� � � � 
 ��� L ������ � and ����	� � * , � ��� � . 0 ��� 
 � � �	� � � 0 �	� 
 1 �we have

� D��� 
 � - ��� � - � � I ��� 
 � - ��� � - �
� �

��� � CE@A C � � I FJG + 	 CEBA F � �
� ��

� �
��� � CE@A C�� � " � I FHG + 	 CEBA F

� ��

� � � , I � - .


�
��� L � �

��� � 1

� � � , I � - .


�
��� L �

��� � . 0 ��� � 17) (12)

Next, we lower bound
�5D��� 
 � � � - � as follows:

� D�	� 
 � � � - � � I ��� 
 � � � - � ( �
��� � CEBA I�
�C�� � "
� EBA ��� EBA I�
�C�� �

��
� (13)
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since at time � , all flow- � traffic with local deadline at server� � � � � .  � no later than � . F �	� G : �	� 
#"'� = either has departed server� � � � � .  � and arrived server � � � � �(� or has been discarded due
to the maximum tolerable local deadline violation

F ��� G : ��� 
#"$� = at
server � � � � � .  � for flow- � traffic. Thus, similar to Equation
(12), we have� D��� 
2� � � - � � I ��� 
 � � � - �

( � � � I � � .

#"'�
�
� � L � �

��� � . F ��� G : ��� 
#"$� =��
( � � � I � � .


#"'�
�
� � L

� � �	� � � 0 �	� � � . F ��� G : ��� 
#"$� = � ) (14)

Since - ��� (!� , we have
I �	� 
 � - ��� � - �5( I �	� 
 � � � - � . Thus,

according to Equations (12) and (14),� D��� 
 � - ��� � - � . � D��� 
 � � � - �� � D�	� 
 � - ��� � - � � I �	� 
 � - ��� � - � . � D�	� 
 � � � - �. I ��� 
 � � � - �
� � � � I � - .



�
� � L

� � ��� � . 0 ��� � � �
. � � � I � � .


#"'�
�
� � L

� � ��� � � 0 �	� � � . F �	� G : �	� 
#"'� =��
� � ��� � .


#"'�
�
��� L

� � ��� � � 0 �	� � � . F �	� G : �	� 
#"'� = �
- .



�
��� L

� � ��� � . 0 �	� � ��� )
Notice that the interval � � . � 
#"'�� � L � � �	� � � 0 �	� � � . F �	� G : �	� 
#"'� = � - .� 
 ��� L � � �	� � . 0 �	� � � � has duration

� - .


�
� � L

� � �	� � . 0 �	� � � � . � � .

#"'�
�
��� L

� � ��� � � 0 �	� � � . F �	� G : �	� 
#"'� = �
� - . � . � ��� 
 � 0 ��� 
 � �


#"'�
�
��� L

0 ��� � � F ��� G : ��� 
#"$� =
� - . � . � ��� 
 � & ��� 
 � F �	� G : �	� 
#"'� = )

According to Equation (7),

� � � � .

#"$�
�
� � L

� � �	� � � 0 �	� � � . F ��� G : ��� 
#"$� = � - .


�
��� L

� � ��� � . 0 �	� � � �
� � � � � � - . � . � �	� 
 � & �	� 
 � F ��� G : ��� 
#"$� = � )

Thus, we have� D�	� 
2� - � � � - � . � D��� 
 � � � - �� � � � � � - . � . � ��� 
 � & �	� 
 � F ��� G : ��� 
#"$� = � )
That is, by Definition 3,H ��� 
 �	� � � � � �	� . � ��� 
 � & ��� 
 � F �	� G : �	� 
#"'� = � ) ,

This theorem describes an important properties of the CMS
discipline, namely, that distortion of essential traffic down-
stream is limited to within a narrow range. To illustrate, con-
sider the special case in which � ��	� 
 � � � for all � so that& �	� 
 � I for � �  � �"�#� � � � . In this case, for any flow � ,
its essential traffic envelope at downstream servers, namely,H ��� 
 �	� � � � � �	� . � � � F ��� G : ��� 
#"$� = � , is affected by the maxi-
mum tolerable local deadline violation

F �	� G : �	� 
#"'� = . Furthermore,
if � � is chosen appropriately such that flow- � packets do not miss
their local deadlines or flow- � packets that miss local deadlines
are discarded, i.e.,

F �	� G : �	� 
 = � I , flow- � ’s essential traffic en-
velope at downstream servers is identical to that at the ingress
server, namely,

H �	� 
 ��� � � � � �	� . � � � . Finally, for two differ-
ent flows � � and � L , according to Equation (10),

H � C � 
 C � � � andH � + � 
 + � � � are independent if � � C � � � and � � + � � � are independent.
Thus, the property of independence between essential traffic en-
velopes at the network edge is preserved downstream.

C. Essential Service Envelope

The above result enables us to derive end-to-end admission
control tests for CMS networks in the single class case. How-
ever, with multiple traffic classes with statistical sharing across
classes, classes affect each others’ performance. Consequently,
characterizing the extent to which resources are shared across
classes is the key to achieving high utilization in multi-class net-
works without worst-case allocation for each class [27]. Thus,
we use statistical service envelopes as a tool for characterizing
and controlling inter-class resource sharing.

Definition 4 (Essential Service Envelope) A sequence of non-
negative random variables = J ��� 
 �	� � � � ? 
� �E� is called a (statisti-
cal) essential service envelope provided by server � � � � �(� to the
traffic of flow � , if 2 � � -K% I and 2 � such that - � � ( � , the min-
imum available service, denoted as & �	� 
 , � � - � � � - 1 , from server� � � � ��� to flow- � traffic with local deadline at server � � � � �(� no
later than - and arriving at server � � � � �(� during , � � - � � 1 is
lower bound by

& ��� 
 , � � - ��� � - 1 ( � � J ��� 
 � - ��� . � � � � � (15)

provided that during , � � - � � 1 , server � � � � �(� only services the
traffic arriving during , � � - ��� 1 .

Roughly,
J ��� 
 �	� � � � is a measure of the service provided in

an interval with length � to flow- � traffic with local deadline �
seconds before the end of the interval. Notice that the minimum
available service for flow � from server � � � � �(� during an inter-
val will depend on the other flows’ arriving traffic. Furthermore,
the essential service envelope provided by server � � � � ��� to flow� depends on the other flows’ essential traffic. Using this defini-
tion, we can now derive an expression for the essential service
envelope.

Theorem 2: For a given � D *�� � . � , 2 � and 2 � % I ,
J �
	 � 
 �	� � � � � K � � . �� ��� : � = � ��
� � 	

H ��� 
 C ��� . � � �

where � � and � are defined by � � � � � � � � � � � D � �(� � . , � � . �
is the set of flows served by server . , and K � is the capacity of
server . .
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Proof: Since the amount of total traffic (except flow � D ) with
local deadlines no later than - and arriving at server . during, � � - ��� 1 is � � ��� : � = � ��
� � 	 , �ED��� 
 C � - ��� � - � . �ED��� 
 C � � � - � 1 and the
total service capacity of server . during the same time interval
is K �
� - ��� . ��� , we have that

& � 	 � 
 , � � - ��� � - 1 (�K � � - ��� . ���
. �� ��� : � = � ��
� � 	

� � D�	� 
 C � - ��� � - � . � D��� 
 C � � � - � � ) (16)

2 � * � � . � , according to Theorem 1, the total flow- � traffic with
local deadlines no later than - arriving at server . during , � � - �
� 1 is bound by� D�	� 
 C � - ��� � - � . � D��� 
 C � � � - �

� � � � � .

 C "$��
��� L

� � ��� � � 0 ��� � � . F ��� G : ��� 
 C "'� = �
- .


 C�
� � L

� � �	� � . 0 �	� � � �
� � � � � � - . � . � ��� 
 C � & ��� 
 C � F �	� G : �	� 
 C "$� = �� H ��� 
 C � - . ��� )

Since
� � , � . � 
 C "'���� L � � �	� � � 0 ��� � � . F �	� G : �	� 
 C "'� = � - . �


 C� � L � � ��� � .0 ��� � � 1 , � *�� � . � , are independent and � � � - . � . � �	� 
 C � & ��� 
 C �F �	� G : �	� 
 C "'� = � , � *�� � . � , are independent, according to Lemma 1,
we have that

�� ��� : � = � ��
� � 	
� � D��� 
 C � - ��� � - � . � D��� 
 C � � � - � �

� �� ��� : � = � ��
� � 	
� � � � .


 C "$��
� � L

� � ��� � � 0 ��� � � . F ��� G : ��� 
 C "'� = �
- .


 C�
� � L

� � ��� � . 0 ��� � ���
� � � �� ��� : � = � ��
� � 	

H ��� 
 C � - . ��� �
and so

& � 	 � 
 , � � - ��� � - 1
( K � � - ��� . ���

. �� ��� : � = � ��
� � 	
� � D��� 
 C � - ��� � - � . � D�	� 
 C � � � - � �

( K �
� - ��� . ���
. �� ��� : � = � ��
� � 	

� � � � .

 C "$��
� � L

� � �	� � � 0 ��� � �
. F ��� G : ��� 
 C "$� = � - .


 C�
� � L

� � ��� � . 0 ��� � � �
( � � K �
� - ��� . ��� . �� ��� : � = � ��
� � 	

H �	� 
 C � - . ��� ) (17)

That is, by Definition 4,J � 	 � 
 �	� � � � � K � � . �� ��� : � = � ��
� � 	
H ��� 
 C ��� . � � ) ,

According to this theorem and Lemma 1, for a given � � - � and
� , there exists a random variable

J �	� 
 � - ��� . � � � � with the
same distribution as

J �	� 
 � - ��� . � � � � such that

& ��� 
 , � � - ��� � - � - 1 ( J ��� 
 � - ��� . � � � � ) (18)

Furthermore, according to Equation (17), (7), and (10), we have
that

& ��� 
 , � � - ��� � - 1
( K �
� - ��� . ��� . �

� ��� : � = � � 
� �
H � � 
 C � - . ��� � (19)

where the random variable
H � � 
 C � - . ��� has the same distri-

bution as
H � � 
 C � - . ��� and

� D� � 
 C � - � � � - � . � D� � 
 C � � � - � �H � � 
 C � - . ��� . Finally, according to Equation (10) and � � � � � ,� * � � . � , are independent,
H � � 
 C � - . ��� , � * � � . � , are in-

dependent. Furthermore,
� � ,�� � � 1 , � * � � . � , are independent,

and from Lemma 1, we have that
H � � � C � - . ��� , � * � � . � , are

independent. Since K � � - � � . ��� . � � ��� : � = � � 
� � H � � 
 C � - . ���has the same distribution as
J �	� 
 � - ��� . � � � � ,

J �	� 
 � - ��� . � � � �
� K �
� - ��� . ��� . �

� ��� : � = � � 
� �
H � � 
 C � - . ��� ) (20)

D. Admission Control

We now derive an end-to-end admission control condition for
CMS networks. The technique used to analyze the deadline-
violation probability is to analyze per-server local delay-bound-
violation probabilities and then compose them into end-to-end
ones. When computing the local-deadline-violation probability
at a given server, any arrival packet at the server is not consid-
ered as discarded even if it incurs a long queueing delay, i.e.,
packet discarding only occurs at the upstream servers. For a
multiplexer (server) in a CMS network and given time � and
local deadline - , an important instant previous to � is the time
when the multiplexer does not service traffic with local dead-
lines later than - . As we see below, this is important for analysis
because the traffic arriving at the multiplexer before this moment
does not affect the probability of local deadline - violation. We
refer to this instant as the void time denoted as

# � � � � - � and pre-
cisely define it as# �
� � � - � �+97;�< = L � L � � and

K �� � L � � I ? � (21)

where
K �� � L � is the total amount of traffic with local deadline

no later than - backlogged at server . at time L .4 Notice that
server . is not necessarily idle at time

# �
� � � - � as it may be
busy serving traffic with local deadlines later than - . We use
a concept of (virtual) delay due to the essential traffic at a par-
ticular node to derive the local deadline-violation probability as
an intermediary step towards bounding the end-to-end deadline
violation probability. Thus, we define (virtual) essential delay� �	� 
 � � � - � of flow- � traffic with local deadline no later than time- at server � � � � �(� at time � as

� ��� 
 � � � - � �+9����$= ��� � D�	� 
 � � � - � � � �	� 
 � � � - ��� � ? ) (22)
�
Without loss of generality, we assume that network is idle at time � .
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Observe that
� ��� 
 � � � - ��� � is the amount of flow- � traffic de-

parting from server � � � � �(� during , I � - � � 1 . If
� ��� 
 � � � - � � � %�ED��� 
 � � � - � , all flow- � traffic with local deadline no later than - at

server . and arriving at server . before time � has departed
server . before time - � � . For one flow- � packet with lo-
cal deadline - arriving at server � � � � �(� at time � , the event of
this packet being served after time - ��� ��� 
 is contained in the
event = � ��� 
 � � � - � % � ��� 
 ? , and we henceforth consider this latter
event. The following theorem shows how to evaluate this delay
distribution.

Theorem 3: The virtual delay distribution of flow � at its � ���
hop is bounded by:

M � � ��� 
 � � � - � % � ��� 
 �
� M � 97;�<� � �

� H �	� 
 ��� � . J ��� 
 �	� � � ��� 
 � � �	� 
 ��� % I � � (23)

for � ��� 
 ( � . - , where
H ��� 
 �	� � and

J �	� 
 ��� � � ��� 
 � � ��� 
 � are
random variables with the same distribution as

H ��� 
 �	� � andJ ��� 
 �	� ��� ��� 
 � � �	� 
 � respectively.
Proof: From Equation (22), we have

= � �	� 
 � � � - � % � ��� 
 ?�� = � D�	� 
 � � � - � . � ��� 
 � � � - � � �	� 
 � % I ? )
Since � ��� 
 ( � . - , - � � �	� 
 ( � . Thus,

�5D��� 
 � - � � �	� 
 � - �&(�ED��� 
 � � � - � , so that 5

= � D��� 
 � � � - � . � ��� 
 � � � - ��� ��� 
 � % I ?� = � D��� 
 � - ��� ��� 
 � - � . � ��� 
 � � � - � � �	� 
 � % I ? )
If � ��� 
 � � � - � % � �	� 
 , there always exist packets with deadlines
no later than - at server . during , # � � � � - � � - � � �	� 
 1 . Since
at
# � � � � - � there is not traffic with deadline no later than - at

server . , at least
�5D��� 
 � # � � � � - � � - � amount of flow- � traffic has

been served. Furthermore, during , # � � � � - � � - ��� ��� 
#1 , server .
only serves the traffic with local deadline no later than - and
arriving at server . after

# � � � � - � . Similar to Equation (16), we
have

& �	� 
 , # � � � � - � � - ��� ��� 
 � - 1
( K ��� - ��� ��� 
 . # �
� � � - �
	

. �
� ��� : � = � � 
� �

� � D� � 
 C � - � � �	� 
 � - � . � D� � 
 C �
# � � � � - � � - � � )

Thus,

� ��� 
 � � � - ��� ��� 
 � ( & �	� 
 , # � � � � - � � - ��� ��� 
 � - 1 � � D��� 
 � # � � � � - � � - � �
and so� � D�	� 
 � - � � �	� 
 � - � . � ��� 
 � � � - ��� ��� 
 � % I �� � � D��� 
 � - ��� ��� 
 � - � . � D��� 
 � # � � � � - � � - �

. & �	� 
 , # �
� � � - � � - ��� ��� 
 � - 1 % I
� )�
When computing the probability of local deadline violation for a flow- �

packet with local deadline � arriving at time � , ������ ��� ����� ��� ��� �! �"#�$���� ��� � � �% ,
because the local deadline of any flow- � packet arriving after time � is larger
than � , so that &'� ���� � � � � �% )(*� ��� �!+ � � ���,� ��� �  = �.-0/1&'� ���� � � �
�2� ��� ��� �% 3(� ��� �%+ � � �
�,� ��� �  = �.-.4

Since the random variable
# � � � � - � * , I � � 1 , we have� � D��� 
 � - � � ��� 
 � - � . � D��� 
 � # � � � � - � � - �
. & ��� 
 , # � � � � - � � - � � �	� 
 � - 1 % I �

� � 97;�<	 ��� � � � �
� � D��� 
 � - � � ��� 
 � - � . � D��� 
 � L � - �

. & �	� 
 , L � - � � �	� 
 � - 1 � % I � )
Notice that for a real number L , from Theorem 1 and The-
orem 2, , �5D�	� 
 � - ��� ��� 
 � - � . �ED��� 
 � L � - � 1 � � � H ��� 
 � - . L � and& �	� 
 , L � - � � ��� 
 � - 1 ( � � J �	� 
 � - � � ��� 
 . L � � �	� 
 � . Accord-
ing to Lemma 1, we can find random variables

H �	� 
 � - . L �
and

J ��� 
 � - � � ��� 
 . L � � ��� 
 � with the same distribution asH ��� 
 � - . L � and
J ��� 
 � - � � ��� 
 . L �J� ��� 
 � respectively such

that , �ED��� 
 � - ��� ��� 
 � - � . �ED�	� 
 �	L � - � 1 � H �	� 
 � - . L � and & ��� 
 , L � - �� �	� 
 � - 1 ( J ��� 
 � - ��� ��� 
 . L � � �	� 
 � . Thus, we have� 97;�<	 ��� � � � �
� � D��� 
 � - � � �	� 
 � - � . � D�	� 
2� L � - �

. & ��� 
 , L � - ��� ��� 
 � - 1 � % I
�
� � 97;�<	 ��� � � � �

� H ��� 
 � - . L �
. J ��� 
 � - � � �	� 
 . L �J� ��� 
 � � % I
� )

Therefore, we have

M , � ��� 
 � � � - � % � �	� 
#1
� M , � D��� 
 � � � - � . � ��� 
 � � � - � � �	� 
 � % I 1� M , � D��� 
 � - � � �	� 
 � - � . � �	� 
 � � � - ��� ��� 
 � % I 1
� M � � D��� 
 � - ��� ��� 
 � - � . � D�	� 
 � # � � � � - � � - �

. & ��� 
 , # � � � � - � � - ��� ��� 
 � - 1 % I �
� M � 97;�<	 ��� � � � �

� � D��� 
 � � � - � . � D��� 
 � L � - �
. & �	� 
 , L � - � � �	� 
 � - 1 � % I �

� M � 97;�<	 ��� � � � �
� H ��� 
 � - . L �

. J ��� 
 � - ��� ��� 
 . L �J� ��� 
 �5�
% I �
� M � 97;�<�56 �

� H �	� 
 ��� � . J ��� 
 �	� ��� ��� 
 � � ��� 
 � � % I � ) ,
Thus, according to Theorem 3, the problem of computing the

flow- � delay distribution is transformed into the problem of find-
ing flow- � ’s essential traffic envelope and essential service enve-
lope. Based on Theorem 1 and Theorem 2, we have the follow-
ing results.

Corollary 1: For � � - % I ,
M , � ��� 
 � � � - � % � ��� 
#1 � 5 ��� 
 � (24)

where

5 �	� 
 � M � 97;�<� � �
� �
� ��� : � =

� � �	� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = �
. K � ��� � � ��� 
 � � % I � �
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and . and � � are defined by � � � � � � � � � � � � ��� � . .
Proof: From Theorem 3, we have

M , � ��� 
 � � � - � % � �	� 
 1
� M � 9/; <� � �

� H �	� 
 ��� � . J ��� 
 �	� ��� ��� 
 � � �	� 
 �5� % I � )
According to Theorem 1,

H ��� 
 �	� � � � � ��� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = � �
and according to Equation (20),

J �	� 
 ��� � � �	� 
 �J� ��� 
 � � K � �	� ��� ��� 
 �
. �
� ��� : � = � � 
� �

� � ��� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = � ) (25)

Therefore,

M , � ��� 
 � � � - � % � ��� 
 1
� M � 97;�<� � �

� H ��� 
 �	� � . J �	� 
 ��� � � ��� 
 � � ��� 
 � � % I �
� M � 97;�<� � �

� � � �	� . � �	� 
 � & �	� 
 � F ��� G : ��� 
#"$� = �. � K � �	� ��� ��� 
 � .
�

� ��� : � = � � 
� �
� � �	� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = � � � % I �

� M � 97;�<� � �
� �
� ��� : � =

� � �	� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �
. K � �	� ��� ��� 
 � � % I � )

That is,

5 �	� 
 � M � 97;�<� � �
� �
� ��� : � =

� � ��� . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �
. K � ��� � � ��� 
 � � % I � ) ,

Thus, applying this result, each flow can be guaranteed an
end-to-end delay bound along with its violation probability by
using Corollary 1 to compose per-node quality-of-service pa-
rameters into end-to-end ones.

IV. SIMULATION AND ADMISSION CONTROL

EXPERIMENTS

In this section, we study the performance of the CMS dis-
cipline by performing a set of ns-2 simulation and admission
control experiments. Our goal is twofold. First, we establish
the effectiveness of our admission control algorithm in properly
controlling the number of admitted flows in CMS networks. To
achieve this, we first perform a large set of simulation experi-
ments, in which a fixed number of flows are established over var-
ious network paths (as described below). For each scenario, we
perform numerous simulations and record average performance
measures such as a end-to-end delay bound violation probabil-
ity. We then run a set of admission control experiments in which
we use an implementation of our admission control to determine

the maximum number of admissible flows under a certain per-
formance criteria. The results of these experiments yield exper-
imental and predicted admissible regions, i.e., the true admis-
sible region obtained by simulations and those obtained by our
admission control algorithm.

Our second set of experiments explore the end-to-end perfor-
mance of CMS networks as compared with non-CMS networks.
In particular, we consider networks of FIFO, EDF, and WFQ
schedulers and investigate the fraction of packets violating end-
to-end delay targets under the different schedulers. These exper-
iments illustrate the potential QoS improvements of coordinated
network scheduling, that is, its ability to improve end-to-end
performance under a particular network load, or conversely to
improve the admissible region under a particular QoS require-
ment.

A. Scenario

We consider a simple tandem network topology as depicted
in Figure 3. All link rates are 10 Mb/sec, packet lengths are 100
bytes, and propagation delays are 0 msec. There are

� � flows
entering the network from the first server and exiting from the
last server. These flows have the longest path and are chosen
to be the target class for analysis. In addition, each router also
serves two classes of cross traffic consisting of

� � flows which
traverse a single router and then exit the network, and

� L flows
that traverse two routers and then exit the network. The cross
traffic has the same characteristics as the target traffic (described
below) and comprises approximately 80% of the total traffic.

We simulate exponential on-off flows with on-rate 64 kb/sec,
mean on time 312 msec and mean off time 325 msec. For the
CMS discipline, we choose0 ��� 
 �:I � � ��	� 
 � � ��� 
 � � �

for cross traffic flows with a 1 hop path;

0 ��� 
 �+I � � ��	� 
 � � ��� 
 � � � �
for cross traffic flows with a 2 hop path;

0 ��� 
 �+I � � ��	� 
 � � ��� 
 � �
� �

for target traffic flows with a 6 hop path;

where � is the expected end-to-end queueing delay bound. In
this case, � ��� � CEBA C1��� � � � � ��� � �� ��� � � � �	� � � 2 � % I is equivalent to� ��� � CEBA C1��� � � � � ��� � �� ��� � � � �	� � � 2 �K% I . Using [21], and the flows’

mean rate, peak rate, and mean burst length given by the tu-
ple � H � � M � � # � � , we approximate the statistical traffic envelope� � ��� � as � � � � �	� ��� � H � � and var � � � �	� ��� � � � � � ��� � � � �	� ��� ., � � � � ��� � 1 L ��� � �	� � H � � . H L� � L , where

� � �	� � � � M � � � I � � � < E� E " F E �# � � H � � � < E� E " F E�� � )
Furthmore, when predicting the admissible region for CMS net-
works, we assume that a packet will be discarded if it suffers a
queueing delay at a server more than 2 times its queueing delay
budget at that server, i.e.,

F �	� G : �	� 
 = � � ��� 
 . Finally, for the EDF
discipline, we choose the priority index for flow- � ’s � ��� packet
at its � ��� hop as � ��	� 
 � � �	� 
 , and for the WFQ discipline, we assign
the same weight for each flow.
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Fig. 3. Tandem Network Topology

B. WFQ Admission Control

To compare CMS with WFQ, we also implement WFQ ad-
mission control as follows. Consider flow � with guaranteed
bandwidth � �� guaranteed at router . such that

� �� � H �� � � � : � = H � K � �
where H � is the long term average rate of flow � , � � . � is the set
of flows that are served by server . . By simple extension of
the results in [38], the probability of the end-to-end deadline � �
violation of the traffic of flow � can be bounded by

M � 97;�<� � �
� �
� ���

� � � � ��� . � � � � ��� � � � � % I � � (26)

where � � � 9 � � � = � �� ? and � is the set of flows with the same
source and destination as flow � .
C. Computing Performance Bounds

To compute

M � 9/; <� � �
� �
� ��� : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �
. K � � � ��� ��� 
 � � % I � �

we use the maximum variance approach developed in [9]. Let

� L� � var
� �
� � � : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �
. K � � � ��� ��� 
 � � �

� var
� �
� � � : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �
. K � � � ��� ��� 
 � � �

. � � � � K � � � � � �	� 
 �
. �
� ��� : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = � � �
� � � K � � � � � �	� 
 �

. �
� ��� : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = � � �� � � ����
. �� �

)

Approximating � � ��� : � = � � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "'� = �. K � � � � � ��� 
 � as Gaussian, the following upper bound can been
obtained.

M � 97; <� � �
� �
� ��� : � =

� � � � . � � � 
 C � & � � 
 C � F � � G : � � 
 C "$� = �
. K � � � ��� ��� 
 � � % I � ��� "
	 ++ ) (27)

A proof of this bound can be found in [9] and a detailed com-
parative performance study in [22]. Roughly, the approach uses
the dominant time scale, the value of � minimizing the expres-
sion above, to derive the exponential asymptotic upper bound
of Equation (27). Our goal here is to use the technique as an
efficient and accurate means to evaluate the admission control
conditions. Regardless, refinements based on large deviations
theory can also be applied within the context of statistical en-
velopes [4].

D. Admissible Regions

Here, we compare measured and predicted admissible regions
for CMS and WFQ networks for the scenario described above,
and also present measured admissible regions for EDF and FIFO
networks. The results of the experiments are depicted in Fig-
ure 4. The figure shows network utilization vs. the end-to-end
queueing delay of the target traffic, i.e., aggregate average traffic
rate divided by link capacity vs. the delay target. The combina-
tions of the target traffic and cross traffic and the corresponding
expected end-to-end queueing delays are given in Table 2.
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Fig. 4. Measured and Predicted Admissible Regions

The simulation curves depict the maximum number of flows
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Utilization Number of Target Flows Number of Cross Flows Expected Queueing Delay �
� � ) ��� 55 220 3 msec
��� ) ��� 56 224 6 msec
��� ) ��� 57 230 12 msec
�  ) � � 58 234 20 msec
�  ) � � 59 236 30 msec
� � )  � 60 240 45 msec
� � ) ��� 61 244 60 msec

TABLE II

TRAFFIC COMBINATION AND EXPECTED END-TO-END QUEUEING DELAY

(scaled to utilization) that can be multiplexed such that the de-
lay target (depicted on the horizontal axis) is satisfied with
delay-bound-violationprobability no more than 0.001. For these
curves, 10 independent simulation runs of 400 simulated sec-
onds are performed and mean results are reported. Similarly, the
‘predicted’ curve depicts the maximum number of flows admit-
ted by our admission control algorithm, under the targeted de-
lay depicted on the horizontal axis, and a delay-bound-violation
probability of 0.001.

We make the following observations regarding this figure.
First, notice that the admissible region for the CMS network
is larger than that of the WFQ, EDF, and FIFO networks. For
example, for the same violation probability ( � I ) I�I  ) and the
same traffic load (60 target traffic flows and 240 cross traffic
flows at each node, i.e., approximately 94.1% utilization), CMS
can support an end-to-end delay of 48 msec whereas WFQ’s de-
lay is 52 msec; EDF’s delay is 56 msec; ans FIFO’s delay is 80
msec. Thus, while WFQ achieves local fairness of bandwidth
sharing at each node [26] and EDF minimizes the queueing de-
lay at a single server system [16], CMS uses the coordination
property to minimize end-to-end delay and achieve global per-
formance properties.

Second, we observe that our CMS admission control algo-
rithm is able to exploit a large fraction of the available statistical
multiplexing gain. For example, by an end-to-end delay bound
of 60 msec, the CMS admission control algorithm admits a set
of flows which contains 56 target traffic flows and 224 cross
traffic flows at every server, within 6.1% of the actual utiliza-
tion achievable in simulations (60 target traffic flows and 240
cross traffic flows). In contrast, for the WFQ network, 54 tar-
get traffic flows and 208 cross traffic flows are admitted at each
router, which is more than 10% less than the utilization achiev-
able in simulations (58 target traffic flows and 234 cross traffic
flows). The reason for the more conservative nature of WFQ
admission control is that traffic is treated as traversing the net-
work on a guaranteed-rate “pipe” between an ingress and egress
router, without taking into account inter-class resource sharing
among pipes. Thus, with more traffic classes and more com-
plex topologies, such an approach will suffer further utilization
penalties.

E. End-to-End Delay Performance

Here, we compare the end-to-end queueing delays incurred
by the target traffic for networks with CMS, WFQ, FIFO, and
EDF schedulers. FIFO services provide baseline results for a
scheduler with neither coordination nor QoS differentiation. In
contrast, EDF provides differentiation and optimality at a single
node, but does not employ coordination, so that gains of CMS
vs. EDF are strictly due to coordination.

We measure end-to-end delay distributions for two scenar-
ios: (a) 56 target traffic flows and 224 cross traffic flows at
each server (the expected end-to-end queueing delay bound for
each flow is 6 msec, and so the increments of the priority in-
dex at each server are 1 msec for target traffic, 3 msec for cross
traffic with 2-hop path, and 6 msec for cross traffic with 1-hop
path); (b) 60 target traffic flows and 240 cross traffic flows at
each server (the expected end-to-end queueing delay bound for
each flow is 45 msec, and so the increments of the priority index
at each server are 7.5 msec for target traffic, 22.5 msec for cross
traffic with 2-hop path, and 45 msec for cross traffic with 1-hop
path). For this fixed number of flows and utilization, Figure 5
depicts the end-to-end queueing delay and its corresponding vi-
olation probability.

We make two observations regarding the figure. First, the
QoS-violation probabilities for CMS, WFQ, and EDF are al-
ways smaller than those for FIFO. For example, in Figure 5 (b),
the violation probability for a 50 msec end-to-end queueing de-
lay bound is 0.0007 for CMS, 0.0016 for EDF, 0.001 for WFQ,
and 0.0094 for FIFO. Second, notice that for smaller delays (less
than 6 msec with 87.7% utilization or less than 35 msec with
94.1% utilization), the CMS violation probability larger than
EDF’s whereas for larger end-to-end queueing delays (greater
than 6 msec with 87.7% utilization or greater than 35 msec with
94.1% utilization scenario) is smaller than EDF’s. The reason
for this is that in a CMS network, packets which suffer exces-
sive queueing delays at upstream nodes have an opportunity to
“catch up” at a downstream node, by having a higher (relative)
priority index. In contrast, in EDF networks, each router treats
packets locally according to their arrival time and local dead-
line, without regard to whether this arrival time is late or early.
Thus, the experiments indicate that coordinated scheduling also
has performance advantages, in addition to its other properties
(e.g., tractability) established above.
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Fig. 5. Comparison of FIFO, EDF, WFQ, and CMS Disciplines (Exponential On-Off Traffic)

V. CONCLUSION

In this paper, we developed a framework for Coordinated
Multihop Scheduling (CMS). With a definition of the fundamen-
tal coordination property, we showed how a number of sched-
ulers from the literature can be characterized as CMS disci-
plines. We then developed a general theory based on traffic and
service envelopes to analyze CMS networks and devised admis-
sion control tests for statistical end-to-end services. We showed
that CMS disciplines limit traffic distortion to within a narrow
range, thereby providing a foundation for efficient and scalable
multi-node services. We performed a set of simulation and ad-
mission control experiments to illustrate the accuracy of the ap-
proach to control multi-node admissions and demonstrated po-
tential performance advantages of CMS as compared to WFQ,
EDF, and FIFO. Our results present a new framework for un-
derstanding end-to-end statistical services in differentiating and
work-conserving schedulers.
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