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Abstract. The IETF’s Integrated Services (IntServ) architecture together with
reservationaggregation provide a mechanism to support the quality-of-service
demands of real-time flows in a scalable way, i.e., without requiring that each
router be signaled with the arrival or departure of each new flow for which it will
forward data. However, reserving resources in “bulk” implies that the reservation
will not precisely match the true demand. Consequently, if the flows’ demanded
bandwidth varies rapidly and dramatically, aggregation can incur significant per-
formance penalties of under-utilization and unnecessarily rejected flows. On the
other hand, if demand varies moderately and at slower time scales, aggregation
can provide an accurate and scalable approximation to IntServ. In this paper, we
develop a simple analytical model and perform extensive trace-driven simula-
tions to explore the efficacy of aggregation under a broad class of factors. Exam-
ple findings include (1) a simple single-time-scale model with random noise can
capture the essential behavior of surprisingly complex scenarios; (2) with a two-
order-of-magnitude separation between the dominant time scale of demand and
the time scale of signaling and moderate levels of secondary noise, aggregation
achieves performance that closely approximates that of IntServ.

1 Introduction

Flow-based resource reservation schemes as embodied by the IETF’s Integrated Ser-
vices protocol (IntServ) [6] provide a means to guarantee each flow’s quality-of-service
requirements. However, since processing reservation requests on a per-flow basis may
not be feasible in high speed core routers,aggregation has been proposed as a mecha-
nism to significantly reduce the signaling demands placed on core routers (e.g., [ 2]).

With aggregation, the per-flow guarantees of IntServ can be achieved without per-
flow signaling of core routers. In particular, edge routers can maintain a long-time-scale
aggregate reservation between a pair of ingress-egress routers. With this existing reser-
vation, individual flows need only signal the ingress node which locally accounts for
resources along the path and independently accepts or rejects new flows. Occasionally,
when the aggregate reservation is determined to be too large or too small as compared to
the actual demand, it can be readjusted via a “bulk” reservation adjustment in the core.
Thus, core nodes are infrequently signaled to achieve scalability, yet without sacrificing
the service model of per-flow guarantees and ideally, with minimal sacrifice in network
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utilization. Thus, aggregation has the potential to simultaneously achieve scalability,
per-flow quality-of-service, and high utilization.1

However, the performance of aggregation depends on a number of factors, the most
important of which is the traffic characteristics of the underlying flows. For example, in
one extreme in which a class’ aggregate traffic is relatively constant over time, the core
reservation can be nearly static and reserved-resource utilization will be high given
the close match between the reservation and the actual traffic. At the other extreme,
if a class’ aggregate demanded bandwidth oscillates quickly and with high variance,
aggregation would have relatively poor performance. In this case, the choice would be
to either rapidly re-adjust the core reservation to track the demand (thereby frequently
signaling and losing the advantage of scalability), or incur inaccuracies between the
demand and the reservation (thereby suffering from under-utilization).

In this paper, we explore the fundamental roles of the timescales and variance of
traffic demand and the timescales of aggregate control on the performance of an aggre-
gate reservation scheme. Using a combination of modeling, analysis, and trace-driven
simulations, we provide conditions under which aggregation is an accurate and high-
performance approximation to the baseline IntServ. Our contributions are as follows.

First, we devise a simple model for aggregate traffic consisting of a sinusoid with
random phase and additive white uniform noise. While clearly omitting many facets
of realistic workloads, the model serves to isolate the effects of a single demand time-
scale as well as the effects of additional variance. Second, we develop a theoretical
model which, under the above traffic demands, provides a closed-form expression for
the system’s key performance measures such as overload probability. Third, we per-
form a set of simulation and numerical investigations into the performance of the basic
model, and consider the impact of a number of simulated extensions to the basic model,
such as correlated, rather than white additive noise. Finally, we perform a set of trace-
driven simulations. This study provides practical insights into a number of factors not
included in the theoretical model such as the role of network topology, correlated de-
mand phases, and aggregating the traffic aggregates. Moreover, we study the accuracy
of the simplified demand model as well as via the theoretical results.

Example findings are as follows. First, we find that the basic demand model and
theoretical result are able to predict the performance of complex and trace-driven sce-
narios. For example, in experiments with QBone traces, we found that the model is able
to predict the overload probability to within 11% accuracy, reserved resource utilization
to within 1% accuracy and the available bandwidth to within 19% accuracy when the
ratio of control to demand time scales is 1/36. Second, we find via trace- and model-
driven simulations as well as the theoretical model, that if the control and demand time
scales are separated by two orders of magnitude and additional variance is moderate,
then aggregation provides performance quite similar to that of IntServ. For example,
we find that if the control and demand time scales are separated by a factor of 72 and
the range of the additive noise is 0.42 times the range of primary demand, then aggre-
gation achieves a utilization of 97% of the utilization achieved by IntServ. However,

1 In this way, the combination of IntServ and aggregation differs fromDiffServ [3], as the latter
cannot provide (per-flow) guaranteed service without additional mechanisms such as those
described above.
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for more highly variable NLANR traces in which the additive noise dominates the si-
nusoidal demand with a range nearly twice as large, both the model and trace driven
simulations show that with the control and demand time scales separated by two orders
of magnitude, aggregation achieves a utilization of 44% of that of IntServ.

Previous research on aggregation addresses both the protocols (i.e., mechanisms
and architectures) and algorithms (i.e., policies) required for aggregate reservation. For
example, an architecture for RSVP aggregation describing how to create and remove
aggregate reservations is described in [2]. Furthermore, mechanisms have been devised
for aggregation over label switched paths [1], multiple domains [9], and via RSVP tun-
nels [14] as well as via reservation agents [10]. Aggregationpolicies address issues such
as how to accurately characterize an aggregate flow [11] and how to predictively make
efficient bulk allocations including considerations of hysteresis [13]. In contrast, our
work presents the first performance study to explore the role of traffic characteristics in
the efficacy of aggregation, that is, to determine the regime under which aggregation is
a high-performance mechanism. Finally, alternate architectures (than aggregation) have
been proposed to provide scalable per-flow quality of service. Examples include end-
point control via probing [4], combined end-point and router control [ 7], and “dynamic
packet state” [12]. However, discussion of the relative merits of such architectures is
beyond scope of this work.

The remainder of this paper is organized as follows. In Section 2, we define the
system and demand models, describe the problem formulation, and develop an analyt-
ical method to characterize the impacts of control time scale, demand time scale, and
mean and variance of demand on the performance tradeoffs of aggregate reservations.
Next, in Section 3 we use model-driven simulation and numerical examples to study
the performance impacts of periodic primary demand and additive secondary demand.
In Section 4, we present a set of trace-driven simulation experiments to further evaluate
the performance tradeoffs of aggregation under a broader set of scenarios not treated by
the basic model. Finally, in Section 5 we conclude.

2 System and Demand Models and Analysis

As described in the introduction, aggregation provides a mechanism to reserve network
resources on behalf of multiple traffic flows. In this section, we develop a simplified
model to capture the key elements of the performance of aggregation, namely, we in-
troduce a single-time-scale demand model in which the aggregate reservation is char-
acterized by a sinusoid with random phase and additive random noise. We describe
a baseline scenario in which such aggregate flows are multiplexed onto a backbone
link and describe three relevant performance measures: the overload probability, the re-
served resource utilization, and the normalized available bandwidth. Finally, we derive
an expression for overload probability for the basic scenario.

2.1 System Model

We first consider a network model as shown in Figure 1(a). In this model, a number
of flows (indexed byj) are multiplexed onto a class or link (indexed byi), and flowj



310 Huirong Fu and Edward W. Knightly

(a) Simplified Network Model. (b) Aggregate Demandri(t), Request̂ri(t), and Reservatioñri(t).

Fig. 1. System Model.

of link i has bandwidth requirementρj
i . The network has a single bottleneck link with

capacityC and all other links have infinite capacity.
Ignoring delay requirements and considering only bandwidth, IntServ’s guaranteed

service can admit any set of flows such that
∑

i

∑
j ρj

i < C, whereas flows are rejected
when the total reserved rate would exceedC.

With aggregate resource reservation, individual flows do not signal the core routers.
Instead, a flow signals its ingress router which makes “bulk” or aggregate resource
reservations in the core, and accepts or rejects incoming flow requests according to
whether there is sufficient available capacity in the bulk reservation. The ingress node
will then periodically adjust the reservation in the core node according to its current
demand.

The aggregatedemand of link-i is simply
∑

j ρj
i which we define byri(t), a time

varying function since the number of flows and their rates change over time due to flow
arrivals and departures. Similarly, we denote the aggregatereservation at timet by r̃ i(t).
Consequently, when a new flow with rateρ∗

i requests admission, if the ingress node has
a current aggregate reservation such that

∑
j ρj

i + ρ∗i < r̃i(t), then the flow is admitted.
Otherwise, wheñri(t) is insufficient, the ingress node will signal the core node for
aggregaterequest r̂i, at time t denoted bŷri(t). Typically, the requested increment
(r̂i(t)− r̃i(t)), often referred to as the bulk reservation, is substantially larger thanρ ∗

i to
avoid rapid subsequent requests to core routers. Then, if

∑
l �=i

r̃l(t) + r̂i(t) < C, the core

node will grant the request̂ri(t) and the new aggregate reservation levelr̃i(t) = r̂i(t)
will be established and the new flow will be accepted; if

∑
l �=i

r̃l(t) + r̂i(t) ≥ C but

C − ∑
l r̃l(t) > ρ∗i , then the new aggregate reservation levelr̃ i(t) = C − ∑

l �=i

r̃l(t)

will be established; otherwise, the current reservation level is maintained and the flow
is rejected.

Likewise, if the ingress node determines that the current demandr i(t) is signif-
icantly less than the current aggregate reservationr̃ i(t), then adecrease in reserved
bandwidth will be requested in order to more efficiently utilize network resources.

Figure 1(b) illustrates the temporal behavior of aggregation. From a trace described
in Section 4, the figure depicts the aggregatedemand of a single ingress noder i(t)
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as well as the sequence of aggregaterequests denoted bŷr i(t) and the sequence of
aggregatereservations denoted bỹri(t).

2.2 Demand and Aggregation Model

Aggregation introduces a tradeoff. If the aggregate reservationr̃ i(t) is infrequently ad-
justed, the signaling overhead in the core network is minimal. However, if the demand
ri(t) varies rapidly, it will diverge from̃ri(t) and cause either under-utilization of the
reservation or unnecessarily blocked flows. On the other hand, if the aggregate reserva-
tion is rapidly adjusted to match the current demand level, the system will achieve high
utilization, yet the requirements of the signaling system are increased and in the limit
(adjusting the reservation level for each flow), are identical to IntServ.

Here, we introduce a simple model to study the relationship between system per-
formance, control (or signaling) and demand time scales, and demand variance. In par-
ticular, we consider as our “basic model”, an aggregate demand of class (or link)i
characterized by

ri(t) = mi + ai cos
(

2π

T
t + θi

)
+ Zi(t), (1)

wheremi is the mean rate andai is the amplitude of a sinusoid with periodT . The
random nature of the demand is further modeled by additive white noiseZ i(t) (i.e.,
EZi(t)Zi(t + s) = 0 for s �= 0) that has uniform distribution, that is,Z i(t) ∼
U [−bi, bi]. Finally, the sinusoids have random phaseθ i which is also uniformly dis-
tributed withθi ∼ U [0, 2π]. We denotepi(t) = mi + ai cos

(
2π
T t + θi

)
as theprimary

demand andZi(t) as thesecondary demand such thatri(t) = pi(t) + Zi(t).
While the model clearly omits properties of realistic traffic, it serves to isolate the

performance impact of two key factors: demand time scale and demand variance (via
T , ai andbi). Moreover, despite its simplicity, the model exhibits coarse resemblance to
some traces of traffic aggregates. For example, considering the trace of Figure 1(b), the
traffic exhibits a near-deterministic periodic long-term trend with additional variability.

To characterize the aggregatereservation r̃i(t), we consider periodic reservation
adjustments at exactly intervals ofτ seconds. Moreover, we assume that the requested
reservation level for a bulk reservation at timet, (k i − 1)τ ≤ t < kiτ , is given by
r̂i(t) = max(ki−1)τ≤s<kiτ ri(s), whereki = 1, · · · , T

τ . To avoid triviality, we assume
that T

τ is an integer. In other words, the aggregate bandwidth reservation is adjusted
everyτ seconds with a requested rate sufficient for the future interval (i.e., “perfect
prediction” of the future demanded rate). While in practice, the adjustment interval
might be made adaptive and perfect prediction is impossible, the model serves to also
isolate the control time scaleτ .

Thus, under the above scenario, we study the relative impact of demand and control
time scales as well as demand variance on system performance, using the performance
measures defined next. Moreover, we show experimentally in Sections 3.3 and 4.1, that
conclusions derived from the above “basic model” can generalize to significantly more
complex scenarios.
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2.3 Performance Analysis

To evaluate the effectiveness of aggregate-based resource reservation, we consider three
performance metrics that we describe as follows. First, theoverload probability, de-
noted byPol, is the ratio of the overloaded traffic (which cannot be admitted) to the
total demand, i.e.,

Pol =
E(

N∑
i=1

(ri − r̃i)+)

E(
N∑

i=1

ri)
, (2)

whereri denotes a random variable with the steady state distribution ofr i(t).
Second,reserved resource utilization, denoted byUr, refers to the fraction of an

aggregate reservation that has been utilized by the underlying traffic, i.e.,

Ur =
(1 − Pol) · E(

N∑
i=1

ri)

E(
N∑

i=1

r̃i)
. (3)

Finally, thenormalized available bandwidth, denoted bybA, also reflects the effi-
ciency of aggregation by describing the fraction of bandwidth available after accounting
for all aggregate reservations, i.e.,

bA =
C − E(

N∑
i=1

r̃i)

C
. (4)

Under the basic model of aggregate demand and the above performance measures,
we compute the overload probability of aggregate resource reservation as follows.
Aggregation Performance. ConsiderN aggregate demands sharing a single bottleneck
link with capacityC as described in the basic model. If the aggregate demand of class
i is ri(t) = mi + ai cos

(
2π
T t + θi

)
+ Zi(t), i = 1, 2, · · · , N , whereZi(t) is white

uniform noise withZi(t) ∼ U [−bi, bi], then the overload probability is approximately

Pol ≈
( τ

T )N ·
T
τ∑

k1=1

· · ·
T
τ∑

kN=1

[
N∑

i=1

fi,ki − C]+

N∑
i=1

(mi + 2τ
T · ai + bi)

, (5)

wherefi,ki = max(ki−1)τ≤s<kiτ [mi + ai ∗ cos
(

2π
T s

)
].

A “sketch” derivation of the result is as follows. To simplify the analysis, we first
consider the phasesθi to bediscretely uniform in [0, τ, 2τ, · · ·T ]. In other words, ag-
gregate reservation requests from different classes occur at identical epochs. Second,
we decouple the impact of the primary and secondary demands and observe that over a
window τ , the secondary demand satisfies P(max0≤s≤τ Zi(s) = bi) ≈ 1 such that, to
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ensure sufficient bandwidth is available over the entire windowτ , an additional band-
width bi must be reserved.2 Next, we exploit the odd symmetric characteristics of the
cosine wave at pointsπ/2 and3π/2 to compute the mean discrete primary demandi as

τ

T

T
τ∑

ki=1

fi,ki =
τ

T

(
T

τ
· mi + 2ai

)
, (6)

which simplifies tomi+ 2τ
T ai. Finally, we compute Equation (2) by conditioning on the

relative phases of the different aggregates, and after some manipulation, Equation ( 5)
follows.

Due to space limitations, the detailed derivation of all three performance measures
is presented in [8]. However, we do consider analytical results forPol, Ur, andbA in
the numerical and simulation studies that follow.

3 Experiments with the Basic Model

The theoretical model described above characterizes the relationship among the time
scale of demand, the demand variance, the control time scale, and the performance of
aggregation. In this section, we present numerical and simulation investigations into
these issues. In particular, using the basic demand model described in Section 2, we
quantify the role of the demand time scale and demand variance for the basic model.
Moreover, we show that alternate models of primary demand having different periodic
functions, and alternate models of secondary demand having temporal correlation, have
little impact on system performance.

3.1 Control and Demand Time Scales

Here, we isolate the roles of control and demand time scales by exploring the perfor-
mance of the basic model under the special case ofZ i(t) = 0, i.e., no secondary de-
mand. With this scenario, one can ask what frequency of reservation (1/τ ) is required for
aggregate-based resource reservation to achieve performance similar to IntServ’s flow-
based resource reservation? Similarly, if the control time scaleτ is limited by scalability
constraints (e.g., routers have a known upper limit on the frequency for which they can
be signaled) what is the performance “cost” of aggregating demand? We first consider
a simple scenario withN = 2 classes, a bottleneck link capacity ofC = 3, and demand
of both classes given bymi = 1, andai = 1.

We begin by illustrating the performance tradeoffs of aggregate-based resource
reservation as the control time scaleτ varies from 0 toT . The results are depicted
in Figure 2(a)-(c) for a fixed demand time scale ofT = 2π ≈ 6.28 (for discussion, we
refer to the units ofT as hours). We make the following observations about the figures.

First, regarding the extreme cases ofτ = 0 andτ = T , observe thatτ = 0 corre-
sponds to the case ofno aggregation, or IntServ, that is, the core’s requested reserva-
tion corresponds precisely to the flows’ total demanded bandwidth (or equivalently, the

2 This argument can be made rigorous by discretizing the intervalτ and taking limits of the
maximum noise in the window.
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Fig. 2. Impact of Control Time Scaleτ .

aggregate reservation is continuously adjusted). This provides an upper bound to the
efficacy of aggregation, which under the given workload is given by an overload prob-
ability of 4.4%, a reserved resource utilization of 100% and an available bandwidth of
36%. At the other extreme, whenτ = T , the aggregate reservation isstatic, and cor-
responds to the maximum total flow demand over the entire period. In this case, the
overload probability is 15.9%, the utilization is 56.1% and the available bandwidth is 0.
This scenario provides a lower bound for the performance of aggregation.

Second, observe that as compared to a static aggregate reservation, system perfor-
mance rapidly improves as the control time scaleτ is decreased from the extreme of
T .3 Furthermore, most of this improvement is incurred with moderate values ofτ in-
dicating little further performance improvements for extremely small values ofτ and
rapid signaling. Two interpretations of this behavior are as follows. First, the curves
describe the signaling frequency required to achieve a certain level of performance. For
example, the figure shows that whenτ is less than 1% ofT , aggregation achieves near
ideal performance. In other words, if the control and demand time scales are separated
by two orders of magnitude, the performance of aggregation is nearly indistinguishable
from that of IntServ. Second, the curves can be viewed in terms of “bulk size”, i.e., the
required increase or decrease in reserved bandwidth in order to achieve a certain perfor-

mance level. Observe that the mean bulk size is simply given by

N∑
i=1

T/τ−1∑
ki=1

|fi,ki+1−fi,ki
|

N×T/τ

so that conclusions regarding time scales of control can be converted to conclusions
regarding the magnitude of the reservation updates.

Figure 3 depicts the reserved resource utilization as a function of the demand time
scaleT for a fixed control time scaleτ of 5.9 minutes. This figure characterizes a
scenario in which performance limitations of core routers dictate a maximum signaling
frequency of once per 5.9 minutes (per class, thetotal number of signaling messages in-
creases with the number of classes). The curve then quantifies the performance penalty
for performing aggregation rather than IntServ as a function of the demand time scale.
Observe that for aggregation to achieve performance within 10% of IntServ, the system
period must be no smaller than 1.57 hr when the control time scaleτ is 5.9 minutes.

3 Curve fitting yields a near precise match between thePol vs. τ curve of Figure 2 (a) and the
function0.162−0.12e−0.4τ . However, we have not yet been able to establish this exponential
relationship analytically.
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3.2 Variance of the Secondary Demand

Here, we explore the role of additional variation in the demand on the performance
of aggregation. Namely, we consider secondary demand given byZ i(t) ∼ U [−bi, bi],
bi ≤ mi − ai, as in the basic model described in Section 2. We consider one bottleneck
link with C = 8 and two traffic aggregates withmi = 2 andai = 1, and variance of
the secondary demand given byσ 2

i = b2
i /3.
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Fig. 4. Impact of Secondary Demand.

From Figure 4 it is clear that variance in secondary demand hinders the efficacy of
aggregation. For a static aggregate reservation (τ = T ), the impact is quite severe as
reserved resource utilization decreases from 100% to 53% when the variance of the sec-
ondary demand is 0.2. For aggregation with an adjustment time scale ofτ = T/16, the
effects are mitigated, e.g., reserved resource utilization decreases to 70% under the same
variance. Regardless, sufficient “noise” in the demand can degrade the performance of
aggregation to levels comparable to a static reservation. Alternatively, if the noise is
moderate, performance similar to IntServ can still be achieved. For example, to achieve
a reserved resource utilization within 20% of IntServ with aggregation andτ = T/16,
the variance of the secondary demand must be limited to 0.05. This corresponds to
a range of noise 0.39 times the range of the primary demand (i.e.,b i = 0.39ai). Of
course, the detrimental effects of such variance can be alleviated with faster signaling
(and reducedτ ).
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3.3 Alternate Primary Demand Models

Here, we consider the impact of alternate models of primary demand in addition to the
sinusoid with random phase. In particular, we consider periodic sawtooth and square
waves with random phase, and in all cases set the secondary noiseZ i(t) to 0.4 For these
three primary demand models, we consider a mean demandm i of 2, variance 1.33, and
periodT = 2π. To achieve a variance of 1.33, the sinusoid has amplitudea i of 1.63,
whereas the sawtooth has amplitudeai of 2, and the square wave has amplitudea i of
1.15. LetC = 6 andN = 2.
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Fig. 5. Alternate Primary Demand Models.

As illustrated in the simulations reported in Figure 5, such variations on the basic
model of primary demand have little impact on performance. This illustrates that the
essential tradeoff of control and demand time scales is quite similar under different de-
mand functions. Hence, consideration of more sophisticated periodic demand functions
may be of limited impact for characterizing the performance of aggregation. Thus, we
limit further investigations to the sinusoidal model and in Section 4 evaluate the ability
of this model to predict the performance of trace-driven experiments.

3.4 Alternate Secondary Demand Models

In this section, we use simulations to consider the performance impact of an alternate
secondary demand model as compared to the uniform white noise considered in the
basic model. Specifically, we consider aZi(t) to be given by a sawtooth wave with
random phase. In the experiments below, we consider a sawtooth with mean 0, variance
0.33, maximum 1, minimum -1, and period equal toT/4, and compare the performance
with white noise with the same mean, variance, and range.

Figure 6 illustrates the impact of temporal correlation in secondary demandZ i(t) on
overload probability forC = 6, N = 2, mi = 2, ai = 1 andbi = 1. The figure shows
that for small control time scalesτ , correlated secondary noise improves performance
whereas for largerτ it degrades performance. Regardless, the difference is minimal, as

4 For example, if the phaseθi is 0, and0 ≤ t ≤ T/2, the sawtooth’s demand is given by
(mi − ai) + 4ai

T
· t, whereas the squarewave’sdemand is given by(mi + ai). In the range

[T/2, T ], the sawtooth’s demand is(mi − ai) − 4ai
T

· (t − T ), whereas the squarewave is
(mi − ai).
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Fig. 6. Alternate Secondary Demand Model.

the figure depicts a worst-case scenario in which the period of the secondary demand
sawtooth wave is1/4th that of the primary demand periodT , andb i = ai. For smaller
periods of temporally correlated secondary demand andb i < ai, the difference is even
smaller.

4 Trace Driven Simulations

In this section, we broaden our experimental investigation to consider more realistic
scenarios and trace-driven simulations. In particular, we study issues such as the ability
of the basic model to predict the performance obtained in trace-driven scenarios, as well
as the impact of network and protocol characteristics in aggregation’s performance.

4.1 Simulation Source and Scenarios
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Fig. 7. Traces.

The trace depicted in Figure 7(a) depicts aggregate measurements obtained from
the QBone “PSC” ingress node on November 16, 2000.5 The mean, variance and de-
mand periodT of the aggregate traffic are 56.8 Mb/sec, 191 and 24 hours, respectively.

5 Available athttp://tombstone.oar.net/sitemap.html.

http://tombstone.oar.net/sitemap.html
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Figure 7(a) shows the corresponding trace of the aggregate traffic. Measurements were
reported as averages over 5 minutes intervals. The trace depicted in Figure 7(b) is ob-
tained from NLANR on December 1, 1999.6 The mean, variance and demand periodT
of the aggregate traffic is 0.74 Mb/sec, 0.45 and 24 hours, respectively. Measurements
were reported over 1 second intervals.

In simulations, we use QBone and NLANR traces to represent the aggregate de-
mandri(t). For multiple aggregate demands, we consider collections of traces each
with random phase over their duration, with the exception of one experiment where we
study the effects of synchronized phase (identicalθ i). We consider a number of net-
work topologies ranging from the single bottleneck of the baseline scenario to more
complex meshes obtained using the topology generator of [ 5]. Moreover, we consider
perfect prediction of future demand such that a core reservation request at timet of
aggregatei is for maximum bandwidth required over the nextτ second interval, i.e.,
maxt≤s<t+τ ri(s). Finally, for each scenario, we conduct 100 independent simulation
runs to empirically obtain the average of the performance parameters. For each run,
we simulate four demand periods, and discard results from the first cycle as transient.
Further details of each scenario, including link capacities, the number of aggregate de-
mands and their spatial distributions are described in the corresponding subsection.

4.2 Validation of the Basic Model
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Fig. 8. QBone Simulations and Model Predictions.
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Fig. 9. NLANR Simulations and Model Predictions.

6 Available athttp://moat.nlanr.net/Traces/Kiwitraces/auck2.html.

http://moat.nlanr.net/Traces/Kiwitraces/auck2.html
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Here, we consider a single bottleneck link with capacity 120 Mb/sec for trace
1 and 3 Mb/sec for trace 2 and compare the performance of the trace-driven sim-
ulations with that predicted by the basic model. To compute the parameters of the
basic model, we compute the mean, variance, and demand timescale of both traces.
For trace 1, considering only the primary demand, the basic model yields parameters
ri(t) = 56.8 + 19.6 · cos(2πt/T + θi), whereas considering both primary demand and
secondary demand, we haveri(t) = 56.8 + 18.5 · cos(2πt/T + θi) + Zi(t), Zi(t) ∼
U[−7.77, 7.77]. For trace 2, considering only the primary demand, the basic model
yields parametersri(t) = max{0, 0.65 + 1.1 · cos(2πt/T + θi)}, whereas considering
both primary demand and secondary demand, we haver i(t) = max{0, 0.63 + 0.63 ·
cos(2πt/T +θi)+Zi(t)}, Zi(t) ∼ U[−1.2, 1.2], with the “max” required to ensure that
even with the high variance of secondary demand, the aggregate rate is non-negative.

Figures 8-9 show the performance comparison between the trace driven simulations
and the model predictions for the three performance measures described in Section 2.
For trace 1, we observe that the sinusoidal model with random phase, while highly
simplifying the details of the true trace, is able to capture the basic behavior of the
system. For example, forτ/T = 1/36, the predictions of overload probability, reserved
resource utilization, and normalized available bandwidth are with 11%, 1%, and 19%
of the simulated values. Furthermore, characterizing variance via additive random noise
Zi(t) rather than purely through the sinusoid with random phase further improves the
prediction, i.e., consideration of primary and secondary demand in general outperforms
consideration of only primary demand. Finally, we observe that as predicted by the
model, if demand and control time scales are separated by two orders of magnitude and
the secondary demand is moderate, aggregation attains performance nearly identical to
IntServ. For example, underτ = 10 minutes,T = 144τ = 24 hours, the overload
probability is 4.56% for IntServ and 5% for aggregation.

For the NLANR experiments, we observe that considering only the primary sinu-
soidal demand and ignoring secondary demand introduces large prediction errors. How-
ever, characterizing demand variance via additive random noiseZ i(t) rather than purely
through the sinusoid with random phase is still able to capture the basic performance
characteristics of the system. Finally, we observe that, as predicted by the model, vari-
ance in secondary demand hinders the efficacy of aggregation. For example, if the de-
mand and control time scales are separated by two orders of magnitude, since the range
of the additive noise is nearly twice (1.2/0.63 = 1.9 times) the range of primary demand,
aggregation achieves a utilization of only 44.2% of that achieved by IntServ.

4.3 Network Topology

We next study the impact of different network topologies, including dumbbell, star, tree,
mesh and freeway with on-ramps. Figure 10 shows the corresponding network topolo-
gies, traffic distribution (arrow lines) and link capacities (Mb/sec). For the dumbbell,
star, and mesh, all links are potential bottlenecks and result in overload whereas only
some of the links are bottlenecked for freeway with on-ramps and the tree (bottleneck
links are represented by the bold lines in Figure 10).

Figure 11 shows the overload probability, reserved resource utilization and available
bandwidth versus the control time scale for different network topologies. We depict the
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Fig. 11. Impact of Network Topology.

performance of both bottleneck links (solid lines) and all links (dotted lines), and as
a benchmark, also depict the performance of one bottleneck link with capacity 155
Mb/sec shared by two aggregate demands.

We make three observations about the experiments. First, considering all links, the
freeway topology has slightly lower utilization but higher available bandwidth than
other topologies due to resource contention among aggregate demands in both the free-
way and cross traffic on-ramps. Second, considering only bottleneck links, the per-
formance difference for different network topologies is very small when all links are
bottlenecked and the traffic is balanced (with the exception of freeway). Similarly, there
is little performance impact between a single and multiple bottleneck links in the differ-
ent topologies. In other words, from the perspective of bottleneck links with QBone-like
demand, aggregate reservation incurs nearly the same performance tradeoffs as in the
single-bottleneck scenario.

4.4 Number of Aggregate Demands

In this section, we study the role of the number of aggregate demands on aggregate
resource reservation by considering 2, 4, and 8 aggregate demands sharing a bottleneck
link with capacity scaled to 155, 311, and 622 Mb/sec respectively.

Because of statistical multiplexing among aggregate demands, one may expect that
like flow-based resource reservation, an increased number of aggregate demands (with
a proportional increase in capacity) will reduce the overload probability and improve
resource utilization for aggregate reservation. However, we find that this is not always
the case.

Figures 12(b) and (c) indicate that under aggregate reservation, an increased number
of aggregate demands always reduces the reserved resource utilization and available
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Fig. 12. Impact of the Number of Traffic Aggregates.

bandwidth. In addition, as shown in Figure 12(a), when the control time scale τ is
smaller than T/2, the system can achieve slightly lower overload probability under
aggregate reservation (as with flow-based resource reservation). However, when the
control time scale τ is greater than T/2, an increased number of aggregate demands
cause significantly higher overload probability under aggregation reservation, unlike the
behavior of flow-based reservation. For example, when the control time scale is T , the
overload probability for 2 aggregate demands sharing one bottleneck link of 155 Mb/sec
is less than 2% but more than 12% for 8 aggregate demands sharing one bottleneck link
with capacity 622 Mb/sec. This is because under a large control time scale, the negative
effect of quantization error from bulk reservation is cumulative. However, we observe
that the performance impact of the number of aggregate demands is quite limited for
faster control and τ ≤ T/2.

4.5 Merging Aggregate Demands

In the above experiments, each aggregate demand reserves its bandwidth independently,
and as described in Section 2, a new reservation is admissible only if the total rate of
all aggregate demands is less than the link capacity. An alternate possibility is to merge
multiple aggregate demands into a single reservation rather than to reserve resources for
each aggregate’s demanded bandwidth independently (which we refer to as isolation).
We consider 2, 4, and 8 aggregate demands sharing a bottleneck link with capacity
scaled to 155, 311, and 622 Mb/sec respectively.
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Figure 13 depicts a comparison of these two scenarios. Observe that merging re-
sults in significant performance improvements, especially when the control time scale
τ approaches T . For example, as shown in Figure 13(a) and Figure 13(c), when the
control time scale τ is as large as the system demand period T , merging makes the
overload probability of 8 aggregate demands decrease from 13% (isolation) to 0, while
the reserved resource utilization increases from 64% to more than 79%.

As an alternate viewpoint, the experiments illustrate that to achieve the same perfor-
mance as isolation, merging can allow an increase in the control time scale τ . For exam-
ple, as shown in Figure 13(b), to keep the overload probability to zero for 4 aggregate
demands, isolation requires τ ≤ T/128 while merging requires only that τ ≤ T/32.

Finally, Figure 13(c) illustrates that such gains increase with the number of aggre-
gate demands. For example, when the control time scale is τ = T/4, 8 aggregate de-
mands can achieve a 10% gain, whereas 4 aggregate demands achieve a 5% gain. Thus,
exploiting the effects of statistical multiplexing for aggregate demands themselves can
have an important effect, especially under larger control time scales.

4.6 Demand Phases
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Fig. 14. Impact of Demand Phase.

For the final experiments, we consider the case of synchronized demands. That is,
both the theoretical model and the simulations are based on each aggregate demand
having a uniformly independent phase. However, as many traces’ behavior indicates
strong-time-of-day characteristics, it is possible that in practice, phases will be corre-
lated.

Here we consider two aggregate demands with identical demand phase (θ 1 = θ2)
and a single bottleneck link with capacity 155 Mb/sec. Figure 14(a) indicates that such
synchronization increases the system overload, except under very large τ , in which
the coarseness of the reservation overwhelms the effect. Figures 14(b) and (c) indicate
only a marginal performance impact for phase synchronization. We observe that while
a performance degradation for dependent phases is expected, the experiments indicate
that they equally degrade the performance of aggregation as well as IntServ. Hence,
synchronized demand cycles are more of a capacity planning issue and play a lesser
role in the efficacy of aggregation itself.
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5 Conclusions

In this paper, we studied the problem of aggregate resource reservation and investigated
the conditions under which aggregation can simultaneously achieve high utilization and
scalability. We presented a simple single-time-scale model with random noise and pro-
vided a derivation of overload probability for such aggregates. Moreover, we used nu-
merical and simulation experiments to explore the design space outside the scope of
the basic model and found that aggregate reservation is largely insensitive to the partic-
ular shape of the (periodic) primary demand, as well as to temporal correlation in the
secondary demand. However, both the model and simulations indicate that the perfor-
mance of aggregation is strongly related to the relationship between the demand and
control time scales as well as to the variance of the secondary demand. Finally, trace-
driven simulations corroborated the conclusions obtained with the theoretical model
and moreover showed that the model is able to characterize the performance of aggre-
gation even under quite complex scenarios. Example findings include that a separation
of time scales of two orders of magnitude between demand and control (i.e., between
the dominant traffic time scale and the time scale for adjustment of the aggregate reser-
vation) ensure excellent performance of aggregation, provided that additional “noise”
(random secondary demand in addition to the primary periodic demand) is moderate.
We found that in one trace the noise was sufficiently moderate whereas in a second trace
the noise dominated the primary demand and aggregation incurred a 44% utilization
penalty. While neither trace is an ideal representation of aggregate real-time traffic as
both traces are dominated by TCP flows, our results regardless provide both an insight
into the basic performance tradeoffs of aggregation as well as a simple model-based
technique for performance prediction.
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