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Abstract— The IETF’s Integrated Services (IntServ) architecture to-
gether with reservation aggregation provide a mechanism to support the
quality-of-service demands of real-time flows in a scalable way, i.e., with-
out requiring that each router be signaled with the arrival or departure of
each new flow for which it will forward data. However, reserving resources
in “bulk” implies that the reservation will not precisely match the true de-
mand. Consequently, if the flows’ demanded bandwidth varies rapidly and
dramatically, aggregation can incur significant performance penalties of
under-utilization and unnecessarily rejected flows. On the other hand, if
demand varies moderately and at slower time scales, aggregation can pro-
vide an accurate and scalable approximation to IntServ. In this paper, we
develop a simple analytical model and perform extensive trace-driven sim-
ulations to explore the effectiveness of aggregation under a broad class of
factors. Example findings include (1) a simple single-time-scale model with
random noise can capture the essential behavior of surprisingly complex
scenarios; (2) with a two-order-of-magnitude separation between the dom-
inant time scale of demand and the time scale of signaling and moderate
levels of secondary noise, aggregation achieves performance that closely ap-
proximates that of IntServ.

I. INTRODUCTION

Flow-based resource reservation schemes as embodied by
the IETF’s Integrated Services protocol (IntServ) [6] provide a
means to guarantee each flow’s quality-of-service requirements.
However, since processing reservation requests on a per-flow
basis may place an excessive burden on high speed core routers,
aggregation has been proposed as a mechanism to significantly
reduce the signaling demands placed on core routers (e.g., [2]).

With aggregation, the per-flow guarantees of IntServ can be
achieved without per-flow signaling of core routers. In particu-
lar, edge routers can maintain a long-time-scale aggregate reser-
vation between a pair of ingress-egress routers. With this ex-
isting reservation, individual flows need only signal the ingress
node which locally accounts for resources along the path and
independently accepts or rejects new flows. Occasionally, when
the aggregate reservation is determined to be too large or too
small as compared to the actual demand, it can be re-adjusted
via a “bulk” reservation adjustment in the core. Thus, core nodes
are infrequently signaled to achieve scalability, yet without sac-
rificing the service model of per-flow guarantees and ideally,
with minimal sacrifice in network utilization. Thus, aggregation
has the potential to simultaneously achieve scalability, per-flow
quality-of-service, and high utilization.1

However, the performance of aggregation depends on a num-
ber of factors, the most important of which is the traffic charac-
teristics of the underlying flows. For example, in one extreme in
which a class’ aggregate traffic is relatively constant over time,
the core reservation can be nearly static and reserved-resource
utilization will be high given the close match between the reser-
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In this way, the combination of IntServ and aggregation differs from DiffServ
[3], as the latter cannot provide (per-flow) guaranteed service without additional
mechanisms such as those described above.

vation and the actual traffic. At the other extreme, if a class’
aggregate demanded bandwidth oscillates quickly and with high
variance, aggregation would have relatively poor performance.
In this case, the choice would be to either rapidly re-adjust the
core reservation to track the demand (thereby frequently signal-
ing and losing the advantage of scalability), or incur inaccura-
cies between the demand and the reservation (thereby suffering
from under-utilization).

In this paper, we explore the fundamental roles of the time
scale and variance of traffic demand and the time scale of ag-
gregate control on the performance of an aggregate reservation
scheme. Using a combination of modeling, analysis, and trace-
driven simulations, we provide conditions under which aggrega-
tion is an accurate and high-performance approximation to the
baseline IntServ. Our contributions are as follows.

First, we devise a simple model for aggregate traffic consist-
ing of a sinusoid with random phase and additive white uniform
noise. While clearly omitting many facets of realistic work-
loads, the model serves to isolate the effects of a single demand
time scale as well as the effects of additional demand variability.
Second, we develop a theoretical model which, under the above
traffic demand, provides a closed-form expression for the sys-
tem’s key performance measures such as overload probability.
Third, we perform a set of simulation and numerical investiga-
tions into the performance of the basic model, and consider the
impact of a number of simulated extensions to the basic model,
such as correlated, rather than white additive noise. Finally, we
perform a set of trace-driven simulations to evaluate the accu-
racy of the simplified demand model. This study also provides
practical insights into a number of factors not included in the
theoretical model such as the role of network topology, corre-
lated demand phases, and aggregating the traffic aggregates.

Example findings are as follows. First, we find that the ba-
sic demand model and theoretical results are able to predict the
performance of complex and trace-driven scenarios. Second, we
find via trace- and model-driven simulations as well as the the-
oretical model, that if the control and demand time scales are
separated by two orders of magnitude and additional variance is
moderate, then aggregation provides performance quite similar
to that of IntServ with a dramatically reduced signaling load on
the core routers.

Previous research on aggregation addresses both the proto-
cols (i.e., mechanisms and architectures) and algorithms (i.e.,
policies) required for aggregate reservation. For example, an
architecture for RSVP aggregation describing how to create
and remove aggregate reservations is described in [2]. Further-
more, mechanisms have been devised for aggregation over label
switched paths [1], multiple domains [8], and via RSVP tunnels
[13] as well as via reservation agents [9]. Aggregation poli-
cies address issues such as how to accurately characterize an
aggregate flow [10] and how to predictively make efficient bulk
allocations including considerations of hysteresis [12]. In con-



2

trast, our work presents the first performance study to explore
the role of traffic characteristics in the effectiveness of aggrega-
tion, that is, to determine the regime under which aggregation
is a high-performance mechanism. Finally, alternate architec-
tures (than aggregation) have been proposed to provide scalable
per-flow quality of service. Examples include end-point control
via probing [4], combined end-point and router control [7], and
“dynamic packet state” [11]. However, discussion of the relative
merits of such architectures is beyond the scope of this work.

The remainder of this paper is organized as follows. In Sec-
tion II, we define the system and demand models, and describe
the problem formulation. Next, in Section III, we develop an
analytical method to characterize the impacts of control time
scale, demand time scale, and mean and variance of demand on
the performance tradeoffs of aggregate reservations. Then, in
Section IV, we use model-driven simulation and numerical ex-
amples to study the performance impacts of periodic primary de-
mand and additive secondary demand. In Section V, we present
a set of trace-driven simulation experiments to further evaluate
the performance tradeoffs of aggregation under a broader set of
scenarios not treated by the basic model. Finally, in Section VI
we conclude.

II. SYSTEM AND DEMAND MODELS AND PERFORMANCE

METRICS

As described in the introduction, aggregation provides a
mechanism to reserve network resources on behalf of multiple
traffic flows. In this section, we develop a simplified model
to capture the key elements of the performance of aggrega-
tion, namely, we introduce a single-time-scale demand model in
which the aggregate reservation is characterized by a sinusoid
with random phase and additive random noise. We describe a
baseline scenario in which such aggregate flows are multiplexed
onto a backbone link and describe three relevant performance
measures: the overload probability, the reserved resource uti-
lization, and the normalized available bandwidth.

A. System Model

We first consider a network model as shown in Figure 1(a).
In this model, a number of flows (indexed by

�
) are multiplexed

onto a class or link (indexed by � ), and flow
�

of link � has band-
width requirement ��� � . The network has a single bottleneck link
with capacity � and all other links have infinite capacity.

Ignoring delay requirements and considering only bandwidth,
IntServ’s guaranteed service can admit any set of flows such that� � � � � � �	�
� , whereas flows are rejected when the total re-
served rate would exceed � .

With aggregate resource reservation, individual flows do not
signal the core routers. Instead, a flow signals its ingress router
which makes “bulk” or aggregate resource reservations in the
core, and accepts or rejects incoming flow requests according to
whether there is sufficient available capacity in the bulk reser-
vation. The ingress node will then periodically adjust the reser-
vation in the core node according to its current demand of all
micro-flows.

The demand of the aggregate flow on link- � is simply
� � � � �which we define by � ������ , a time varying function since the num-

ber of flows and their rates change over time due to flow arrivals

and departures. Similarly, we denote the aggregate reserva-
tion at time � by �� � ����� . Consequently, when a new flow with
rate ���� requests admission, if the ingress node has a current
aggregate reservation such that

� � � � �������� ���� ������� , then the
flow is admitted. Otherwise, when �� ������� is insufficient, the
ingress node will signal the core node for aggregate request �� � ,
at time � denoted by �� � ����� . Typically, the requested increment
( �� ��������� �� ������� ), often referred to as the bulk reservation, is sub-
stantially larger than � �� to avoid rapid subsequent requests to
core routers. Then, if

�!#"$ � �� ! ����� �%�� � ����� �&� , the core node will

grant the request �� � ����� and the new aggregate reservation level�� � �����(' �� � ����� will be established and the new flow will be ac-
cepted; if

�!#"$ � �� ! ����� �)�� �������+* � but � � � ! �� ! �����-, ���� , then the

new aggregate reservation level �� �������.' � � �!#"$ � �� ! ����� will be es-

tablished; otherwise, the current reservation level is maintained
and the flow is rejected.

Likewise, if the ingress node determines that the current de-
mand � � ����� is significantly less than the current aggregate reser-
vation �� ������� , then a decrease in reserved bandwidth will be re-
quested in order to more efficiently utilize network resources.
The condition under which a decrease is invoked as well as the
decrease amount is described below.

Figure 1(b) illustrates the temporal behavior of aggregation.
From a trace described in Section V, the figure depicts the ag-
gregate demand of a single ingress node � � ����� as well as the se-
quence of aggregate requests denoted by �� � ����� and the sequence
of aggregate reservations denoted by �� ������� .
B. Demand and Aggregation Model

Aggregation introduces a tradeoff. If the aggregate reserva-
tion �� � ����� is infrequently adjusted, the signaling overhead in
the core network is minimal. However, if the demand � � �����
varies rapidly, it will diverge from �� ������� and cause either under-
utilization of the bulk reservation or unnecessarily rejected
(blocked) flows. On the other hand, if the aggregate reserva-
tion is rapidly adjusted to match the current demand level, the
system will achieve high utilization, yet the requirements of the
signaling system are increased and in the limit (adjusting the
reservation level for each flow), are identical to IntServ. Thus,
IntServ is ideal from the utilization perspective in that flows are
always admitted whenever sufficient capacity is available (i.e.,� � � � � � � �/� ). In contrast, aggregation has less bandwidth
efficiency than IntServ but reduces the network’s signaling load.

Here, we introduce a simple model to study the relationship
between system performance, time scales of control (or signal-
ing) and demand, and demand variance. In particular, we con-
sider as our “basic model”, an aggregate demand of class (or
link) � characterized by

� ������.'�0	� �21 �436587 9�:4;< � �>= ��? �A@ �������CB (1)

where 0 � is the mean rate and 1 � is the amplitude of a sinusoid
with period

<
. The random nature of the demand is further mod-

eled by additive white noise @ ������� (i.e., DE@ ������� @ ����� �	F �G'�H forFJI')H ) that has uniform distribution, that is, @ � ������K)LNMO�QP � B�P ��R .
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(a) Simplified Network Model (b) Aggregate Demand � ������� , Request �� ������� , and Reservation �� �������
Fig. 1. System Model

Finally, the sinusoids have random phase = � which is also uni-
formly distributed with = � K LJM H B :4; R . We denote � ������� '0 � � 1 ��3 5 7������� � �>= �	� as the primary demand and @ ������� as the
secondary demand such that � ��������' � ������� �A@ ������� .

While the model clearly omits properties of realistic traffic,
it serves to isolate the performance impact of two key factors:
demand time scale and demand variance (via

<
, 1 � and P � ).

Moreover, despite its simplicity, the model exhibits coarse re-
semblance to some traces of traffic aggregates. For example,
considering the trace of Figure 1(b), the traffic exhibits a near-
deterministic periodic long-term trend with additional variabil-
ity. In addition, the model captures the diurnal pattern that In-
ternet traffic has been shown to exhibit.

To characterize the aggregate reservation �� ������� , we consider
periodic reservation adjustments at exactly intervals of 
 sec-
onds. Moreover, we assume that the requested reservation level
for a bulk reservation at time � , �	� � �� � 
�� � � � � 
 , is given by�� � ������'����������������! #"%$'&)(����#" � � ����� , where � � '*��B : B,+-+,+ B � " , and� " is an integer. In other words, the aggregate bandwidth reser-
vation is adjusted every 
 seconds with a requested rate suffi-
cient for the future interval (i.e., “perfect prediction” of the fu-
ture demanded rate), such that if the aggregate reservation is suc-
cessful, no flows will be rejected in the next 
 seconds. While
in practice, the adjustment interval might be made adaptive and
perfect prediction is impossible, the model serves to also isolate
the control time scale 
 .

Thus, under the above scenario, we study the relative impact
of demand and control time scales as well as demand variance
on system performance using the performance measures defined
next. Moreover, we show experimentally in Sections IV and
V that conclusions derived from the above “basic model” can
generalize to significantly more complex scenarios.

C. Performance Metrics

To evaluate the effectiveness of aggregate-based resource
reservation, we consider three performance metrics that we de-
scribe as follows. First, the overload probability, denoted by.0/ ! , is the ratio of the overloaded traffic (which cannot be ad-

mitted) to the total demand, i.e.,

.1/ ! ' D �32�� $ � � � � � �� � �!4��
D � 2�� $ � � �#�

B (2)

where � � denotes a random variable with the steady state distri-
bution of � ������� , and 5 is the number of aggregate flows.

Second, reserved resource utilization, denoted by L76 , refers
to the fraction of an aggregate reservation that has been utilized
by the underlying traffic, i.e.,

L86�' �9� � . / ! � D � 2�� $ � � � �
D � 2�� $ � �� � � :

(3)

Finally, the normalized available bandwidth, denoted by P-; ,
also reflects the efficiency of aggregation by describing the frac-
tion of bandwidth available after accounting for all aggregate
reservations, i.e.,

P ; ' � � D �32�� $ � �� � �� :
(4)

Under the basic model of aggregate demand and the above
performance measures, we compute the overload probability.0/ ! , reserved resource utilization L 6 and normalized available
bandwidth P<; of aggregate resource reservation in the following
section.

III. THEORETICAL ANALYSIS

In this section, we devise an analytical model for predicting
the performance of aggregation as a function of the control time
scale and characteristics of the underlying traffic. In particular,
we derive closed form expressions for the above performance
metrics as a function of the signaling interval 
 , the demand
period

<
, the mean 0 � and amplitude 1 � of the primary demand,

and the range P � of the secondary demand.
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A. Overload Probability

We first consider the overload probability as defined in Equa-
tion (2) via the following theorem.

Theorem 3.1 (Overload Probability). Consider 5 aggre-
gate flows sharing a single bottleneck link with capacity � as
described in the basic model. If the aggregate demand of class� is � ������� ' 0 � � 1 �436587 � ����N� �>= � � �)@ ������� , � ' ��B : B,+-+,+ B 5 ,
where @ � ����� is white uniform noise with @ � ������K LJM �QP � BP � R , and
the bandwidth of the aggregate reservation is adjusted at inter-
vals 
 , for 
 � <

, the overload probability is approximately

.0/ ! � � "� � 2
� ��

��� $ � +,+,+
� ��

��� $ � M 2�� $ � � ��� � � � � R 4
2�� $ � ��0 � � � "� 1 � � PC�#� B (5)

where
� ��� ��� ' �����������)� �9 #" $ &)( ���#"�M 0	� �>1 ��3 5 7 � ���� � �CR .

Proof. By the definition in Equation (2), we have

.1/ ! ' D � 2�� $ � � � � � �� �#�!4��
D � 2�� $ � � �#�

� D � 2�� $ � � �� � � �� �#�!4��
2�� $ � D � �� � � :

To simplify the analysis, we consider the phases = � to be
discretely uniform in M H B 
 B : 
 B-+,+-+ < R . In other words, aggre-
gate reservation requests from different classes occur at identical
epochs. By conditioning on the relative phases of the different
aggregates, we have

D � 2	 � $ � � �� � � �� � � 4 � � � �	
��� $ � +,+,+

� �	
��� $ � � 
< � 2 M 2	 � $ � � ��� � � � � R 4

:
Finally, with 2�� $ � D � �� � � � 2�� $ � ��0	� � � "� 1 � � PC�#� as shown in the

Appendix, Equation (5) follows. 

B. Reserved Resource Utilization

We next consider reserved resource utilization, which, as de-
fined in Equation (3), characterizes the extent to which an ag-
gregate flow utilizes its resource reservation.

Theorem 3.2 (Reserved Resource Utilization). Based on
the assumptions as described in Theorem 3.1, the reserved re-
source utilization is

L 6 ' �9� � . / ! � 2�� $ � 0	�
� "� � 2 � ��� 2�� $ �� ��� ��� � ��� � � B (6)

where  ��� ��� ' �����'��� � � �9 #" $ &)( � � " M 0	� �/1 ��365 7 � ����N� � � PC� R ,� ' � � � B,+-+,+ B ����B,+-+,+�� 2 � 2�� $ �� ��� ��� �A� 1���� � � '
��B-+,+-+ B � " ��� � � ' ��B : B,+-+,+ B 5�� and � '�� � � B,+,+-+ B�� � B-+,+-+�� 2 �2�� $ �� ��� ��� * � 1���� � � ' � B,+,+-+ B � " ��� � � ' ��B : B,+-+,+ B 5 � .

Proof. We have D � 2�� $ � � � ��' D � 2�� $ � � � � �>@ � ���.' D � 2�� $ � � � � �
D � 2�� $ � @ �#� ' 2�� $ � 0 � since the traffic aggregates � � are indepen-

dent and the primary demand � � and secondary demand @ � are
also independent for � ' ��B : B,+-+,+ B 5 .

To calculate D �32�� $ � �� � � , set ! ' 2�� $ � �� � . Hence, at any time

� , we have ! ' 2�� $ �� ��� ��� for � � � B � � B,+,+-+ B�� 2 �#" � or ! ' �
for � � � B�� � B,+-+,+ B � 2 �$"�� . The corresponding probabilities for

! ' 2�� $ �  ��� � � and ! ' � are � � ! ' 2�� $ �  ��� � � � ' � "� � 2
for ��� � B�� � B,+,+-+ B�� 2 �%" � and � � ! ' � � ' � "� � 2 for� � � B � � B,+-+,+ B � 2 �&"'� , respectively. By conditioning on the rel-
ative (and again discretized) phases of the different aggregates,
we have

D � ! �G' 	 � ��� 
< � 2 2	 � $ �  ��� � � � � 	 � ��� 
< � 2 � � :
Rearranging terms and recalling that ! ' 2�� $ � �� � , we have

D � 2	 � $ � �� � �.' � 
< � 2 � 	 � 2	 � $ �  ��� ��� � 	 � � �
:

(7)

Finally, from the definition of Equation (3), Equation (6) fol-
lows. 


Corollary 3.1 (Reserved Resource Utilization). When the
overload is small and 
>� <

, the reserved resource utilization
is approximately

L�6 � �
� � : "� �(�*)��,+ ��(�*)��.- � �

�(�*)��0/ ��(�*)��1- �
:

(8)

Proof. If the overload is small, then the aggregate reserva-
tion �� � is approximately equal to the aggregate request �� � , thusD �32�� $ � �� � � � D � 2�� $ � �� � �.' 2�� $ � D � �� � � . From the Appendix,

D � 2	 � $ � �� � � � 2	 � $ � 0 � � : 
< 2	 � $ � 1 � � 2	 � $ � PC� : (9)

Recall that D � 2�� $ � � �#�.' 2�� $ � 0 � , and from the definition of Equa-

tion (3), Equation (8) follows. 

We make the following observations about Equation (8).

First, the three ratios
"� ,

�(�2)��0+ ��(�*)��1- � and

�(�*)��0/ ��(�*)��0- � determine the re-

served resource utilization L 6 . Next, the impacts of
"� and�(�2)�� + ��(�*)��1- � on reserved resource utilization L 6 modulate each other:



5

when the ratio of 2�� $ � 1 � to 2�� $ � 0 � is large (widely fluctuating

primary demand), a small
"� (fast signaling) is required to avoid

an excessive utilization penalty. Finally, the impact of the sec-
ondary demand on reserved resource utilization L 6 is indepen-
dent of 
 due to the uncorrelated nature of this additive noise.

C. Normalized Available Bandwidth

Finally, we derive an expression for the available bandwidth
remaining after all aggregate reservations as follows.

Theorem 3.3 (Normalized Available Bandwidth). Based
on the assumptions as described in Theorem 3.1, the normalized
available bandwidth is

P ; ' � � � "�-� 2 � � � 2�� $ �  ��� ��� � � � � �
� :

(10)

Proof. From Equation (7) and the definition in Equation (4),
Equation (10) follows. 


Corollary 3.2 (Normalized Available Bandwidth). When
the overload is small and 
 � <

, the normalized available
bandwidth is approximately

P ; � � � 2�� $ � 0 � � : "� 2�� $ � 1 � � 2�� $ � PC�� :
(11)

Proof. From Equation (9) and the definition in Equation (4),
Equation (11) follows. 


We make the following observations about Equation (11).

First, the normalized available bandwidth P ; is linear in 2�� $ � 0 � ,
"� 2�� $ � 1 � and 2�� $ � PC� .

Second, the impact of
"� on P ; depends on 2�� $ � 1 � . When

2�� $ � 1 � is large (large amplitude of primary demand),
"� (the con-

trol time scale) must be sufficiently small to avoid low available
bandwidth to new traffic aggregates.

Next, when 
 � <
(e.g., IntServ) and the overload is small or

equal to zero, �� � ' � � . Thus, D � 2�� $ � �� � ��' D � 2�� $ � � � ��' 2�� $ � 0 � .
Thus, from the definition, the ideal normalized available band-

width is P ; ' �E� �(�2)�� - �
� . Therefore, to achieve scalability,

dynamic aggregate reservation has to reserve additional band-

width of
: "� 2�� $ � 1 � � 2�� $ � PC� , which is proportional to

"� 2�� $ � 1 �
and 2�� $ � P � .

Finally, when 
 ' <
(static aggregate reservation), we haveD � 2�� $ � �� � ��' ����� � 2�� $ � ��0	� �>1 � � PC�#�CB � � . Thus, P ; ' ���%� �!����(�*)�� � - � 4 + � 4 / �# 

� B�H8� . Compared with the ideal normalized avail-

able bandwidth P ; ' �G� �(�*)��.- �� (e.g., IntServ), static aggregate

reservation has to reserve additional bandwidth of 2�� $ � 1 � � 2�� $ � P �
to achieve scalability.

We evaluate these analytical results for overload probability.0/ ! , reserved resource utilization L 6 and normalized available
bandwidth P ; in the numerical and simulation studies that fol-
low.

IV. EXPERIMENTS WITH THE BASIC MODEL

The theoretical model described above characterizes the re-
lationship among the time scale of demand, the demand vari-
ance, the control time scale, and the performance of aggregation.
In this section, we present numerical and simulation investiga-
tions into these issues. In particular, using the basic demand
model described in Section II, we quantify the role of the con-
trol time scale, demand time scale and demand variance for the
basic model. Moreover, we show that alternate models of pri-
mary demand having different periodic functions, and an alter-
nate model of secondary demand having temporal correlation,
have little impact on system performance.

A. Control and Demand Time Scales

Here, we isolate the roles of control and demand time scales
by exploring the performance of the basic model under the spe-
cial case of @ ������� ' H , i.e., no secondary demand. With this
scenario, one can ask what frequency of reservation (1/ 
 ) is re-
quired for aggregate-based resource reservation to achieve per-
formance similar to IntServ’s flow-based resource reservation?
Similarly, if the control time scale 
 is limited by scalability
constraints (e.g., routers have a known upper limit on the fre-
quency for which they can be signaled) what is the performance
“cost” of aggregating demand? We first consider a simple sce-
nario with 5 ' :

, a bottleneck link capacity of � '�� , and both
aggregate flows given by 0 � ' � and 1 � ' � .

We begin by illustrating the performance tradeoffs of
aggregate-based resource reservation as the control time scale
 varies from 0 to

<
. The results are depicted in Figure 2(a)-(c)

for a fixed demand time scale of
< ' : ; �	�

:
:�


(for discus-
sion, we refer to the units of

<
as hours). We make the following

observations about the figures.
First, regarding the extreme cases of 
 ' H and 
 ' <

, ob-
serve that 
 '
H corresponds to the case of no aggregation, or
IntServ, that is, the core’s requested reservation corresponds pre-
cisely to the flows’ total demanded bandwidth (or equivalently,
the aggregate reservation is continuously adjusted). This pro-
vides an upper bound to the performance of aggregation, which
under the given workload is given by an overload probability of
4.4%, a reserved resource utilization of 100%, and a normalized
available bandwidth of 36%. At the other extreme, when 
 ' <

,
the aggregate reservation is static, and corresponds to the maxi-
mum total flow demand over the entire period. In this case, the
overload probability is 15.9%, the utilization is 56.1% and the
available bandwidth is 0. This scenario provides a lower bound
for the performance of aggregation.

Second, observe that as compared to a static aggregate reser-
vation, system performance rapidly improves as the control time
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Fig. 2. Impact of Control Time Scale �

scale 
 is decreased from the extreme of
<

.2 Furthermore, most
of this improvement is incurred with moderate values of 
 in-
dicating little further performance improvements for extremely
small values of 
 and rapid signaling. Two interpretations of this
behavior are as follows. First, the curves describe the signaling
frequency required to achieve a certain level of performance.
For example, the figure shows that when 
 is less than 1% of

<
,

aggregation achieves near ideal performance. In other words, if
the control and demand time scales are separated by two orders
of magnitude, the performance of aggregation is nearly indis-
tinguishable from that of IntServ. Second, the curves can be
viewed in terms of “bulk size”, i.e., the required increase or de-
crease in reserved bandwidth in order to achieve a certain perfor-
mance level. Observe that the mean bulk size is simply given by�(�*)�� ��� ��� �(� � )�� � � �	� � ��
 � � � �	� � � �

2
�� " so that conclusions regarding time scales

of control can be converted to conclusions regarding the magni-
tude of the reservation updates.
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Fig. 3. Impact of Demand Time Scale �
Figure 3 depicts the reserved resource utilization as a function

of the demand time scale
<

for a fixed control time scale 
 of
5.9 minutes. This figure characterizes a scenario in which per-
formance limitations of core routers dictate a maximum signal-
ing frequency of once per 5.9 minutes (per class, the total num-
ber of signaling messages increases with the number of classes).
The curve thus quantifies the performance penalty for perform-
ing aggregation rather than IntServ as a function of the demand
�
Curve fitting yields a near precise match between the ����� vs. � curve of

Figure 2(a) and the function ����������������� ��!#"%$ &(' .

time scale. Observe that for aggregation to achieve performance
within 10% of IntServ, the system period must be no smaller
than 1.57 hr when the control time scale 
 is 5.9 minutes.

B. Variance of the Secondary Demand

Here, we explore the role of additional variation in the de-
mand on the performance of aggregation. Namely, we consider
secondary demand given by @ � �����.K LNMO�QP � B�P ��R , P � � 0 � � 1 � , as
in the basic model described in Section II. We consider one bot-
tleneck link with � ' 
 and two traffic aggregates with 0 � ' :
and 1 � ' � , and variance of the secondary demand given by) �� ')P ���* � .

From Figure 4(b), it is clear that variance in secondary de-
mand hinders the performance of aggregation. For a static ag-
gregate reservation ( 
 ' <

), the impact is quite severe as re-
served resource utilization decreases from 100% to 53% when
the variance of the secondary demand is 0.2. For aggregation
with an adjustment time scale of 
 ' < * � � , the effects are miti-
gated, e.g., reserved resource utilization decreases to 70% under
the same variance. Regardless, sufficient “noise” in the demand
can degrade the performance of aggregation to levels compara-
ble to a static reservation. Alternatively, if the noise is moder-
ate, performance similar to IntServ can still be achieved. For
example, to achieve a reserved resource utilization within 20%
of IntServ with aggregation and 
 ' < * � � , the variance of the
secondary demand must be limited to 0.05. This corresponds
to a range of noise 0.39 times the range of the primary demand
(i.e., PC� ' H

:
�,+ 1 � ). Of course, the detrimental effects of such

variance can be alleviated with faster signaling (and reduced 
 ).

C. Alternate Primary Demand Models

Here, we consider the impact of alternate models of primary
demand in addition to the sinusoid with random phase. In par-
ticular, we consider periodic sawtooth and square waves with
random phase, and in all cases set the secondary noise @ �������
to 0.3 For these three primary demand models, we consider a
mean demand 0 � of 2, variance 1.33, and period

< ' : ;
. To

achieve a variance of 1.33, the sinusoid has amplitude 1 � of 1.63,
-
For example, if the phase .0/ is 0, for 13254 ��67�980�%: , the sawtooth’s demand

is given by ;=<>/?�A@�/�BDC &FE �G 1 , whereas the square wave’s demand is given by

;=<>/HCI@J/KB . For 1L2�4 �980��67�M: , the sawtooth’s demand is ;=<N/%�O@J/KBP� &FE �G ;=1P�Q�OB ,
whereas the square wave is ;R<>/���@�/ ).
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whereas the sawtooth has amplitude 1 � of 2, and the square wave
has amplitude 1 � of 1.15. Let � ' � and 5 ' :

.
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Fig. 5. Alternate Primary Demand Models

As illustrated in the simulations reported in Figure 5, such
variations on the basic model of primary demand have little im-
pact on performance. This illustrates that the essential tradeoff
of control and demand time scales is quite similar under differ-
ent primary demand functions. Hence, consideration of more
sophisticated periodic demand functions may be of limited im-
pact for characterizing the performance of aggregation. Thus,
we limit further investigations to the sinusoidal model and in
Section V evaluate the ability of this model to predict the per-
formance of trace-driven experiments.

D. An Alternate Secondary Demand Model

In this section, we use simulations to consider the perfor-
mance impact of an alternate secondary demand model as com-
pared to the uniform white noise considered in the basic model.
Specifically, we consider @ � ����� to be given by a sawtooth wave
with random phase. In the experiments below, we consider a
sawtooth with mean 0, variance 0.33, maximum 1, minimum -
1, and period equal to

< * � , and compare the performance with
white noise with the same mean, variance, and range.

Figure 6 illustrates the impact of temporal correlation in
secondary demand @ ������� on overload probability for � ' � ,5 ' :

, 0 � ' :
, 1 � ' � and P � ' � . The figure shows that for

small control time scales 
 , correlated secondary noise degrades
performance whereas for larger 
 it improves performance. Re-
gardless, the difference is minimal, as the figure depicts a worst-
case scenario in which the period of the secondary demand saw-
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Fig. 6. Alternate Secondary Demand Model

tooth wave is � * � &�� that of the primary demand period
<

, andP � ' 1 � . For smaller periods of temporally correlated secondary
demand and P6� �A1 � , the difference is even smaller.

V. TRACE DRIVEN SIMULATIONS

In this section, we broaden our experimental investigation to
consider more realistic scenarios and trace-driven simulations
performed with a special-purpose simulator developed in Mat-
lab. In particular, we study issues such as the ability of the basic
model to predict the performance obtained in trace-driven sce-
narios, as well as the impact of network and protocol character-
istics in aggregation’s performance.

A. Simulation Source and Scenarios

The trace depicted in Figure 7(a) depicts aggregate measure-
ments obtained from the QBone “PSC” ingress node on Novem-
ber 16, 2000 from measurements reported as averages over 5
minute intervals. The mean, variance and period

<
of the aggre-

gate traffic are 56.8 Mb/sec, 191 and 24 hours, respectively. The
trace depicted in Figure 7(b) is obtained from NLANR on De-
cember 1, 1999 from measurements reported as averages over 1
second intervals.4 The mean, variance and period

<
of the ag-

gregate traffic is 0.74 Mb/sec, 0.45 and 24 hours, respectively.
In simulations, we use QBone and NLANR traces to repre-

sent the aggregate demand � � ����� . For multiple aggregate flows,
we consider collections of traces each with random phase over
their duration, with the exception of one experiment where

& Available at http://moat.nlanr.net/Traces/Kiwitraces/auck2.html
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Fig. 8. QBone Simulations and Model Predictions

we study the effects of synchronized phase (identical = � ). We
consider a number of network topologies ranging from the
single bottleneck of the baseline scenario to more complex
meshes obtained using the topology generator of [5]. More-
over, we consider perfect prediction of future demand such that
a core reservation request at time � of aggregate � is for maxi-
mum bandwidth required over the next 
 second interval, i.e.,��������� � � �9 "%$'&)(�� � " � ������� . Finally, for each scenario, we conduct
100 independent simulation runs to obtain the empirical average
of the performance parameters. For each run, we simulate four
demand periods, and discard results from the first cycle as tran-
sient. Further details of each scenario, including link capacities,
the number of aggregate flows and their spatial distributions are
described in the corresponding subsections.

B. Validation of the Basic Model

Here, we consider a single bottleneck link with capacity
120 Mb/sec for trace 1 and 3 Mb/sec for trace 2 and com-
pare the performance of the trace-driven simulations with that
predicted by the basic model. To compute the parameters of
the basic model, we compute the mean, variance, and demand
time scale of both traces. For trace 1, considering only the
primary demand, the basic model yields parameters � � ����� '
� �

:

 � ��+

:
� 36587C� : ; � * < � = � � , whereas considering both pri-

mary demand and secondary demand, we have � ������� ' � �

:

 �� 


:
� 365 7 � : ; � * < � = � � � @ ������� , @ ������� K U M ���

:
����B��

:
��� R . For

trace 2, considering only the primary demand, the basic model

yields parameters � � ����� ' ������� H B�H
:
� � � �

:
� 365 7�� :4; � * < �	= � � � ,

whereas considering both primary demand and secondary de-
mand, we have � �������.' ���%� � H�B�H

:
� � � H

:
� �.36587C� :4; � * < � = � � �@ ������� � , @ ������� K U MO� �

:
: B,�

:
: R , with the “max” required to en-

sure that even with the high variance of secondary demand, the
aggregate rate is non-negative.

Figures 8 and 9 show the performance comparison between
the trace driven simulations and the model predictions for the
three performance measures described in Section II. For trace 1,
we observe that the sinusoidal model with random phase, while
highly simplifying the details of the true trace, is able to capture
the basic behavior of the system. For example, for 
 * < ' � * � � ,
the predictions of overload probability, reserved resource uti-
lization, and normalized available bandwidth are within 11%,
1%, and 19% of the simulated values. Furthermore, characteriz-
ing variance via additive random noise @ ������� rather than purely
through the sinusoid with random phase further improves the
prediction, i.e., consideration of primary and secondary demand
in general outperforms consideration of only primary demand.
Finally, we observe that as predicted by the model, if demand
and control time scales are separated by two orders of magni-
tude and the secondary demand is moderate, aggregation attains
performance nearly identical to IntServ. For example, under
 ' � H minutes,

< ' � � � 
 ' : �
hours, the overload proba-

bility is 4.56% for IntServ and 5% for aggregation.

For the NLANR experiments, we observe that considering
only the primary sinusoidal demand and ignoring secondary de-
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Fig. 9. NLANR Simulations and Model Predictions
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mand introduces large prediction errors. However, character-
izing demand variance via additive random noise @ ������� rather
than purely through the sinusoid with random phase is still able
to capture the basic performance characteristics of the system.
Finally, we observe that, as predicted by the model, a large vari-
ance in secondary demand hinders the effectiveness of aggre-
gation. For example, if the demand and control time scales are
separated by two orders of magnitude, since the range of the
additive noise is nearly twice (1.2/0.63 = 1.9 times) the range
of primary demand, aggregation achieves a utilization of only
44.2% of that achieved by IntServ.

C. Network Topology

We next study the impact of multiple bottleneck links and dif-
ferent network topologies, including dumbbell, star, tree, mesh
and freeway with on-ramps. Figure 10 shows the corresponding
network topologies, traffic distribution (arrow lines) and link ca-
pacities (Mb/sec). For the dumbbell, star, and mesh, all links are
potential bottlenecks and result in overload whereas only some
of the links are bottlenecked for freeway with on-ramps and the
tree (bottleneck links are represented by the bold lines in Fig-
ure 10).

Figure 11 shows the overload probability, reserved resource
utilization and normalized available bandwidth versus the con-
trol time scale for different network topologies. We depict the
performance of both bottleneck links (solid lines) and all links
(dotted lines), and as a benchmark, also depict the performance
of one bottleneck link with capacity 155 Mb/sec shared by two
aggregate flows.

We make three observations about the experiments. First,

considering all links, the freeway topology has slightly lower
utilization but higher available bandwidth than other topologies
due to resource contention among aggregate flows in both the
freeway and cross traffic on-ramps. Second, considering only
bottleneck links, the performance difference for different net-
work topologies is very small when all links are bottlenecked
and the traffic is balanced (with the exception of freeway). Sim-
ilarly, there is little performance impact between a single and
multiple bottleneck links in the different topologies. In other
words, from the perspective of bottleneck links with QBone-
like demand, aggregate reservation incurs nearly the same per-
formance tradeoffs as in the single-bottleneck scenario.

D. Number of Aggregate Flows

In this section, we study the role of the number of aggregate
flows on aggregate resource reservation by considering 2, 4, and
8 aggregate flows sharing a bottleneck link with capacity scaled
to 155, 311, and 622 Mb/sec respectively.

Figures 12(b) and (c) indicate that under aggregate reserva-
tion, an increased number of aggregate flows always reduces the
reserved resource utilization and available bandwidth. In ad-
dition, as shown in Figure 12(a), when the control time scale
 is smaller than

< * : , the system can achieve slightly lower
overload probability under aggregate reservation (as with flow-
based resource reservation). However, when the control time
scale 
 is greater than

< * : , an increased number of aggregate
flows causes significantly higher overload probability under ag-
gregation reservation, unlike the behavior of flow-based reser-
vation. For example, when the control time scale is

<
, the over-

load probability for 2 aggregate flows sharing one bottleneck
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Fig. 11. Impact of Network Topology
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Fig. 12. Impact of the Number of Aggregate Flows

link of 155 Mb/sec is less than 2% but more than 12% for 8
aggregate flows sharing one bottleneck link with capacity 622
Mb/sec. This is because under a large control time scale, the
negative effect of quantization error from bulk reservation is cu-
mulative. However, we observe that the performance impact of
the number of aggregate flows is quite limited for faster control
and 
 � < * : .

E. Merging Aggregate Flows

In the above experiments, each aggregate flow reserves its
bandwidth independently, and as described in Section II, a new
reservation is admissible only if the total rate of all aggregate
flows is less than the link capacity. An alternate possibility is to
merge multiple aggregate flows into a single reservation rather
than to reserve resources for each aggregate’s demanded band-
width independently (which we refer to as isolation). We con-
sider 2, 4, and 8 aggregate flows sharing a bottleneck link with
capacity scaled to 155, 311, and 622 Mb/sec respectively.

Figure 13 depicts a comparison of these two scenarios. Ob-
serve that merging results in significant performance improve-
ments, especially when the control time scale 
 approaches

<
.

For example, as shown in Figure 13(a) and Figure 13(c), when
the control time scale 
 is as large as the system demand period<

, merging makes the overload probability of 8 aggregate flows
decrease from 13% (isolation) to 0, while the reserved resource
utilization increases from 64% to more than 79%.

As an alternate viewpoint, the experiments illustrate that to
achieve the same performance as isolation, merging can allow

an increase in the control time scale 
 . For example, as shown
in Figure 13(b), to keep the overload probability to zero for 4
aggregate flows, isolation requires 
 � < * � : 
 while merging
requires only that 
 � < * � : .

Finally, Figure 13(c) illustrates that such gains increase with
the number of aggregate flows. For example, when the control
time scale is 
 ' < * � , 8 aggregate flows can achieve a 10%
gain, whereas 4 aggregate flows achieve a 5% gain. Thus, ex-
ploiting the effects of statistical multiplexing among the aggre-
gate flows themselves can have an important effect, especially
under larger control time scales, and despite having a small
number of aggregate flows.

F. Phases of Aggregate Flows

For the final experiments, we consider the case of synchro-
nized flows. That is, both the theoretical model and the simu-
lations are based on each aggregate flow having a uniformly in-
dependent phase. However, as many traces’ behavior indicates
strong-time-of-day characteristics, it is possible that in practice,
phases will be correlated.

Here we consider two aggregate flows with identical phase
( = � ' = � ) and a single bottleneck link with capacity 155 Mb/sec.
Figure 14(a) indicates that such synchronization increases the
system overload, except under very large 
 , in which the coarse-
ness of the reservation overwhelms the effect. Figures 14(b) and
(c) indicate only a marginal performance impact for phase syn-
chronization. We observe that while a performance degradation
for dependent phases is expected, the experiments indicate that
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they equally degrade the performance of aggregation as well as
IntServ. Hence, synchronized flow cycles are more of a capac-
ity planning issue and play a lesser role in the performance of
aggregation itself.

VI. CONCLUSIONS

In this paper, we studied the problem of aggregate resource
reservation and investigated the conditions under which aggre-
gation can simultaneously achieve high utilization and scalabil-
ity. We presented a simple single-time-scale model with random
noise and derived closed-form expressions for the key perfor-
mance measures related to aggregation: overload probability, re-
served resource utilization, and normalized available bandwidth.
Moreover, we used numerical and simulation experiments to
explore the design space outside the scope of the basic model
and found that aggregate reservation is largely insensitive to the
particular shape of the (periodic) primary demand, as well as
to temporal correlation in the secondary demand. In contrast,
both the model and simulations indicate that the performance
of aggregation is strongly related to the relationship between
the demand and control time scales as well as to the variance
of the secondary demand. Finally, trace-driven simulations cor-
roborated the conclusions obtained with the theoretical model
and moreover showed that the model is able to characterize the
performance of aggregation even under quite complex scenar-
ios. Example findings include that a separation of time scales
of two orders of magnitude between demand and control (i.e.,
between the dominant traffic time scale and the time scale for

adjustment of the aggregate reservation) ensure excellent perfor-
mance of aggregation, provided that additional “noise” (random
secondary demand in addition to the primary periodic demand)
is moderate. We found that in one trace the noise was suffi-
ciently moderate whereas in a second trace the noise dominated
the primary demand and aggregation incurred a 44% utilization
penalty. While neither trace is an ideal representation of aggre-
gate real-time traffic as both traces are dominated by TCP traf-
fic, our results regardless provide both an insight into the basic
performance tradeoffs of aggregation as well as a simple model-
based technique for performance prediction.

APPENDIX: CALCULATION OF 2�� $ � D � �� � �
Let �� ������� ' ���%� ��� � ���! #" $ &)(�� � " � ������� and �@ ������� '

�����������)� �9 "%$'&)(����#" @ ������� , where � � ' ��B : B,+-+,+ B � " for � '��B : B-+,+,+ B 5 . By decoupling the impact of the primary demand� � and secondary demand @ � , we have �� � ����� � �� � ����� � �@ � ����� .
Thus

D � �� � � � D � �� � � �>D � �@ � �
:

(12)

By definition, we have D � �� �#� ' "�
� ��

��� $ � � ��� ��� . Exploiting the

odd symmetric characteristics of the cosine wave at points
; * :
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and �
; * : , we have

� ��
��� $ � � ��� � � ' � " 0 � � : 1 � . Thus

D � �� � � ' 0 � � : 
< 1 �
:

(13)

By definition, we have D � �@ � ��' ���� � �� � ���� � � �� �#� � �� � . To calcu-
late
���� � � �� � � , at time interval 
 , consider a sequence � � , � � , +-+,+ ,�	� � of independent and identically distributed random variables

with cdf 
�� �� � and pdf
� � �� � K U � �QPC��B�PC�#� . �@ � represents the

maximum of � � , � � , +,+,+ , � � � , i.e.,�@ � ' ������ $ - $ � � � - :
The cdf of �@ � is given by


 �� � � �� � �.' . � �@ � �
�� � ��' � � �� ��� � . � ������ $ - $ � � � - � �� �#�
:

From independence of � - ,

. � � �%�� $ - $ � � � - �
�� � �.' � ��
- $ �

. � � - �
�� � �.' 
 � �� � �� � �CB
and we have 
 �� � � �� � �.' � � �� ��� � 
 � �� � �� � �

:
Taking derivatives leads to the pdf� �� � � �� � �.' 
�� �� � � �� � �.' � � �� ��� � � " 
 � � � �� � �� � � � � � �� � �

:
Thus,

D � �@ � � ' � �
� � �� � � �� � � �� � � � �� �

' � � �� ��� � � / �� / � �� � � " � �
� � � PC�: P � � � � � � �: P � � �� �

' � � �� ��� � � " � �� " � � P �' PC�
:

(14)

Thus, from Equations (12)- (14), we have

2	 � $ � D � �� �#� � 2	 � $ � ��0 � � : 
< 1 � � PC�#�
:

(15)
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