
A Framework for Design and Evaluation of
Admission Control Algorithms in Multi-Service

Mobile Networks
Rahul Jain and Edward W. Knightly

Department of Electrical and Computer Engineering
Rice University

In Proceedings of IEEE INFOCOM ’99

Abstract— Supporting Quality of Service (QoS) guarantees in wireless
networks requires that admission control algorithms incorporate user mo-
bility, and limit the probability that sufficient resources are unavailable
when a user must handoff. In this paper, we develop a framework for
designing admission control algorithms in wireless networks that support
guaranteed QoS. First, we devise a taxonomy to explore the mathemati-
cal structure and practical design tradeoffs encountered in developing ad-
mission control algorithms. We next introduce the Perfect Knowledge Ad-
mission Control Algorithm, which, while unrealizable in pr actice, serves as
a benchmark for evaluating admission control algorithms byusing future
knowledge of handoff events to exactly control the admissible region. Fi-
nally, we perform an extensive set of simulations (including trace-driven
simulations) and, applying the Perfect Knowledge Algorithm, we study sev-
eral admission control algorithms from the literature, identify a number of
key system parameters for algorithm design, and quantify the fundamental
tradeoffs in complexity and accuracy as revealed by the taxonomy.

I. I NTRODUCTION

Resource allocation is an important component for future
packet networks to support multimedia applications with Qual-
ity of Service (QoS) requirements. In wireless networks that
support user mobility, client requirements are not limited to
QoS parameters such as packet loss probability and minimum
throughput, as users may also experience performance degra-
dation due to properties of the wireless channel (e.g., from
physical-layer channel errors) and due to user mobility from
handoffs. While sophisticated service disciplines [9], [11] and
medium access techniques [2], [4] may be used to mask the for-
mer problem, admission control must be used to address the lat-
ter problem [1], [3], [5], [7], [8], [10], [12], [13], [15], [17].
In particular, since a mobile user may handoff to neighboring
cells during the lifetime of its call, network resources must be
reserved even in cells other than the one in which the user was
admitted. Otherwise, if sufficient resources are not available at
a new cell when the mobile user must hand off, the call must
either suffer prolonged periods of significantly reduced QoS or
be dropped all together. Thus, we consider a key QoS metric
provisioned via admission control to beP

drop

, the probability
that insufficient resources are available for handing off a mobile
user. Moreover, we consider the critical factor for evaluating
an admission control algorithm’s effectiveness to be its ability
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to maximize resource utilization (and minimize call blocking)
subject to the user’sP

drop

constraint.

In this paper, we develop a new framework for designing and
evaluating resource allocation and admission control algorithms
in wireless and mobile networks that support quality of service,
and in particular, algorithms that provision resources to control
P

drop

. Our contributions are three-fold.

First, we formulate a taxonomy of admission control algo-
rithms for mobile multi-service networks which reveals both
the structure and the fundamental design choices encountered
in designing such algorithms. In particular, we first classify ad-
mission control algorithms according to whether they allocate
resources via acell-occupancyapproach or aspatial mobility
approach. In the former case, a cell’s occupancy statistics are
controlled with use of a flow model which characterizes the be-
havior of call arrivals, departures, and handoffs into and out of a
cell, irrespective of a mobile user’s previous or future locations.
In contrast, the latter approach allocates network resources by
exploiting the interdependence of cell-to-cell occupancies, i.e.,
the spatial mobility of a user or group of users. We next classify
algorithms depending on whether or not they model user loca-
tions and mobility in aspatially uniformmanner across the net-
work’s cells, thereby incorporating heterogeneity among cells.
Finally, we distinguish between algorithms that control traffic
on a per-user basis and those that manage resources on an ag-
gregate per-cell basis. Using these dimensions, we describe a
number of algorithms from the literature within the context of
this taxonomy and illustrate several key tradeoffs in the design
of admission control algorithms in terms of granularity of re-
source control, mathematical tractability, and efficacy of accu-
rately controlling the admissible region while also provisioning
the desired quality of service.

Second, we introduce thePerfect Knowledge Algorithm
(PKA) to serve as a benchmark for performance evaluation
of resource reservation algorithms in mobile networks. We
show that PKA, while unrealizable for on-line admission con-
trol, serves its benchmarking purpose by achieving the maxi-
mal QoS-constrained admissible region of any algorithm that
has complete knowledge of the future mobility behavior of all
established (admitted) calls as well as the new call requesting
admission, but as would be the case with an on-line algorithm,



without knowledge of calls that may request admission in the
future. By comparing the admissible regions and QoS param-
eters obtained using a given admission control algorithm with
those obtained by PKA, we can assess the error introduced by
an admission control algorithm’s approximations used for ana-
lytical tractability, and simplifications used to limit complexity
and communication overhead.

Finally, we perform an extensive set of simulation and admis-
sion control experiments using a two-dimensional 64-cell net-
work. Using implementations of several admission control al-
gorithms and a suite of mobility models including the traces of
[16], we use the Perfect Knowledge Algorithm to quantify the
impact of the taxonomy’s design tradeoffs in practical scenarios.
Moreover, we use this framework to explore the importance of
several design issues for admission control algorithms such as
the mobility model, mobility speed, heterogeneity of bandwidth
demands, and call arrival rate. Our results yield insights not only
to the key issues for designing admission control algorithms, but
also illustrate areas where further study is needed. For example,
we find that while algorithms from the literature are successful
in limiting network access to satisfy mobility QoS constraints,
they can be quite conservative in certain environments such as
high spatial correlation of user locations (e.g., as in a “down-
town” mobility model) and low probability of handoff drop.

II. TAXONOMY OF ADMISSION CONTROL ALGORITHMS

Mobile Admission Control Algorithms

Cell-Occupancy Allocation Spatial-Mobility Allocation

Uniform Non-UniformNon-Uniform

Aggregate Per-User Aggregate Per-User

Coarse-grain Granularity of Resource Control Fine-grain

Fig. 1. Taxonomy of Admission Control Algorithms

In this section, we introduce a taxonomy of admission con-
trol algorithms for mobile and wireless cellular networks. We
classify algorithms along three dimensions which, while hav-
ing a simple mathematical representation, have significant im-
plications regarding an algorithm’s computational complexity,
analytical tractability, and accuracy in properly controlling the
admissible region. The taxonomy is illustrated in Figure 1 and
as described in the Introduction leads to three design choices:
(1) cell occupancy vs. spatial mobility, (2) spatially uniform vs.
non-uniform, and (3) aggregate vs. per-user control.

Below, we show how this taxonomy results in five classes of
admission control algorithms for mobile networks. Throughout
the discussion, we denoteC(x; j; k; t) as thecumulativecapac-
ity handed off from cellj to cellk in the interval[0; t] from user
x. For simplicity of notation, denoteC(x; 0; k; t) as the capac-
ity in cell k used by userx which originated its call in cellk.
Hence, if userx’s call request originates in a cell other thank
thenC(x; 0; k; t) = 0 for all t. Similarly, denote the cumula-

tive capacity of calls that depart from the network from cellj by
time t asC(x; j; 0; t).

A. Spatially Uniform Occupancy Allocation

An admission control algorithm which we classify as “spa-
tially uniform occupancy allocation” may be described as fol-
lows. First, under a spatially uniform model, users are equally
likely to be located in any cell of the mobile network (or of a
cell cluster). In other words, denoting the location of the mobile
userx at timet by L(x; t), and denoting the number of cells in
a cluster byM ,

P (L(x; t) = j) =

1

M

(1)

for all usersx and all cellsj = 1; � � � ;M in the cluster. Notice
that with such uniformity of location, aggregate and per-user
approaches are equivalent as indicated in Figure 1.

Mathematically, resource allocation algorithms in this class
are concerned with a cell’s occupancy behavior. We denote
(t)

as a typical cell’s occupancy at timet (expressed in bandwidth
units for example), which may be expressed in terms of the ag-
gregate flow model of Figure 2 as


(t) =

X

x
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C(x; �; k; t) (2)

whereH
in

denotes the set of cells with users handing off into
the cell (including new calls) andH

out

denotes the set of cells
from users flowing out, which includes call departures.

As an example, if each ofM cells has the capacity to sup-
port C users, each requiring capacity 1, then the probability
that a cell is in an overload state (and hence hand-offs are be-
ing dropped) whenN users are active in the system is given by

P (
(t) � C) =
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(3)

A key advantage of a spatially uniform occupancy approach
as taken in [1], [12] for example, is that it provides a framework
for overcoming state-space explosion problems encountered in a
multi-dimensional Markov model of a mobile network, as both
per-user mobility and cell-to-cell interactions are not explicitly
modeled. Moreover, using the flow model as in Figure 2, this
framework can be applied to problems such as estimating the
mean overflow duration, i.e., the mean time that
(t) � C (as
in [1]), or determining an optimal capacity to set aside for guard
channels [12], [13].

Roughly, an admission control algorithm’s granularity of re-
source control is affected by the available information (whether
measured, communicated by other cells, specified by users, etc.)
so that the order of the algorithmic complexity can be expected
to increase with the amount of information processed. The spa-
tially uniform occupancy allocation approach can be character-
ized as in Equation (3), with a probability distribution vector of
sizeC. Since this is the same for all cells, we can say that the
information granularity of resource control is of orderC.
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Fig. 2. Cell Occupancy vs. User Mobility Model

Hence, spatially uniform occupancy allocation is both com-
putationally simple for on-line resource allocation as well as an-
alytically tractable by treating mobile users on an aggregate ba-
sis and assuming spatially uniform user occupancy. In Section
IV, we consider the impact of such a coarse-grained approach
on an admission control algorithm’s accuracy.

B. Spatially Non-Uniform Aggregate Occupancy Allocation

An admission control algorithm which allocates resources in
a spatially non-uniform manner according to the aggregate be-
havior of the mobile users differs from the aforementioned ap-
proach in that different cells may have different occupancy char-
acteristics. In particular, the occupancy of cellj at time t is
given by


(j; t) =

X

x

X

k2H

in;j

C(x; k; j; t)�

X

x

X

k2H

out;j

C(x; j; k; t)

(4)

While cells need not have the same occupancy statistics, in
this class of admission control algorithms, cell occupancies of
neighboring cells are assumed to be uncorrelated. In particular,
in a cell-occupancy approach, the spatial covariance function is
approximated as zero such that

 

t

(j; k) = E
(j; t)
(k; t)�E
(j; t)E
(k; t) � 0; j 6= k:

(5)

Here, we make the distinction between “occupancy” approaches
versus “mobility” approaches according to whether the algo-
rithm incorporates thiscorrelation among occupancies in dif-
ferent cells, i.e., whether 

t

(j; k) � 0, for j 6= k.
Thus, algorithms in this class have more fine grain resource

control than in the uniform case, and can explicitly address the
issue of spatial “hot spots”, such as that which might arise in a
cellular network with a downtown, for example. This class of
algorithms therefore increases the order of the size of the infor-
mation content toM � C as each cell maintains its own proba-
bility distribution vector for the occupancy. An example of an
admission control algorithm in this class is found in [3] where a
decoupling-of-states approach is introduced to address the state-
space explosion problems incurred in Markov modeling of cel-
lular networks. In Section IV, we further address the issue of

spatial non-uniformity of user locality using a set of simulation
experiments that include mobile users with non-uniformly dis-
tributed destinations.

C. Spatially Non-Uniform Per-User Occupancy Allocation

In contrast to the classes above, a spatially non-uniform per-
user occupancy allocation scheme controls network resources
according to individual user’s occupancy characteristics.

Thus, in this class of admission control algorithms, each user
has an associated steady-state per-cell occupancy density func-
tion given by

f(x; j; c) = lim

T!1
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By incorporating each user’s occupancy densitiesf(x; j; c)

into an admission control algorithm, resources may potentially
be more accurately allocated than in an aggregate approach. The
spatially non-uniform per-user occupancy approach associates a
per-cell occupancy density with each user as in Equation (6). In
particular, the size of information content in this case would be
of orderN �M for N active users in anM -cell network. How-
ever, such an approach also raises the question of how to obtain
each user’sf(x; j; c) in practice as well as how to determine
P

drop

from these distributions.
In [17] an algorithm in this class is proposed in which this

issue is addressed by having a user specify the set of cells that
it expects to occupy during its connection lifetime as part of its
traffic specification. In other words, at connection set-up time,
users requiring QoS support must always specify their desired
QoS parameters as well as their future bandwidth demands usu-
ally in the form of a maximum average rate and a maximum
burst size. In [17], this specification is augmented with a set
of cells�

x

that userx will occupy such that if userx requires
capacityc, the occupancy distributions are given by

F (x; j; r) =

�

1(r > 0) j 62 �

x

1(r > c) j 2 �

x

(7)

where1(�) is an indicator function. Hence, with the use ofa
priori user mobility profiles, [17] performs admission control
using spatially non-uniform per-user occupancy allocation.



D. Aggregate Mobility Allocation

The following two classes of admission control algorithms
usemobility allocationand differ from the occupancy alloca-
tion schemes in that the temporal and spatial correlation of a
user’s locations or a group of users’ locations over time is ex-
plicitly addressed. We refer to algorithms which account for
such cell-to-cell interactions as employing “mobility allocation”
such that the spatial occupancy covariance may be non zero, i.e.,
 

t

(j; k) 6= 0 for somet; j, andk. More generally, a character-
ization of aggregate mobility behavior can be described by the
distributionG as

P (

X

x2j

fC(x; j; k; t+ s)� C(x; j; k; t)g < C j 
(l; t);

l = 1; � � � ;M) = G(j; k; s; c) (8)

so thatG is the distribution of the capacity of all handoffs from
cell j to k over intervals of lengths given the network’s current
occupancy. Hence, an admission control algorithm in the aggre-
gate mobility class requires a model or measurement scheme for
determiningG(j; k; s; c) and a mechanism for estimatingP

drop

from theG’s.
While this occupancy vs. mobility distinction is quite sim-

ple conceptually, it has significant implications in the design of
admission control algorithms: for example, explicit modeling of
cell-to-cell interactions using a multi-dimensional Markov chain
results in a state space explosion [3]. Approaches to address this
issue include [14], in which the asymptotic regions of very slow
and very fast mobility are considered.

Thus, this class of admission control algorithms is the first
under our taxonomy to explicitly address cell-to-cell mobility.
Consequently, such algorithms must address how to model and
characterize the cell-to-cell correlation via theG(j; k; s; c) dis-
tribution, and require an increased granularity of information of
M

2

�C �T , whereT is the average call holding time in anM -cell
network, expressed in time slots.

E. Per-User Mobility Allocation

As the name implies, per-user mobility allocation differs from
the scheme above in that each user has a mobility profileH

given by

P (C(x; j; k; t+ s)� C(x; j; k; t) < C j L(x; t))

= H(x; j; k; s; c) (9)

which describes the distributions of the user’s future locations
and handoffs given its current location (or more generally, its
past locations as well).

An admission control algorithm using such per-user, spatially
non-uniform mobility characterizations employs the most fine
grain resource control of the classes within the taxonomy, and
has information content of orderNM2

T . Such fine-grain con-
trol has potential benefits to an algorithm’s accuracy, but en-
counters formidable problems of computational complexity and

analytical tractability in specifying and manipulating such de-
tailed user profiles, and in computing the relevant QoS parame-
ters given these profiles.

We classify the “shadow cluster” approach of [7] as employ-
ing per-user mobility allocation. In [7], the complexity issues
encountered in this class of admission control algorithms are ad-
dressed with a measurement-based approach. In particular, each
user is characterized by “active mobile probabilities” which are
adaptive and measurement-based versions ofH(x; j; k; s; c) so
that a new mobile user is admitted only if a set of tests onH indi-
cate that a new mobile call has sufficient probability of surviving
for the duration of its call without encountering a hand-off drop.
While state-space explosion issues are largely avoided with this
approach, additional computational and communication over-
heads are encountered, as neighboring base-stations must dy-
namically adjust and communicate the active mobile probabili-
ties of each user.

F. Discussion

In summary, with design decisions trading coarse to fine grain
resource control for algorithmic scalability and simplicity, the
above taxonomy can be viewed largely in terms of aggregation
and heterogeneity. In particular, the above taxonomy distin-
guishes among algorithms according to their aggregation prop-
erties, namely (1) whether handoffs into a cell from neighboring
cell are aggregated into an occupancy model (irrespective of the
handing-off cell) or treated individually according to a mobil-
ity model which accounts for their previous locations; and (2)
whether users (handing off or occupying a cell) are treated indi-
vidually or on an aggregate per cell basis. Second heterogeneity
also plays a key role in that the taxonomy distinguishes among
algorithms according to whether they exploit spatial heterogene-
ity (as in a non-uniform approach) and whether they exploit user
heterogeneity (as in a per-user approach).

In general, with a more fine grain approach, state-space ex-
plosion and analytical complexity issues become more press-
ing, and we have described a number of techniques that have
been proposed to address these issues including decoupling of
states, mobility traffic descriptors, asymptotic approximations,
and measurement-based approaches. In Figure 1’s illustration
of the taxonomy, algorithm granularity is increasing from left to
right as

C < MC < NM < M

2

CT < NM

2

T

in anM -cell network forN active users with mean call holding
timeT , cell capacityC, and assumingN � MC. To illustrate
this granularity tradeoff using a scenario from Section IV with
C � 40;M � 64; N � 2560; T � 10, we have

40 < 2; 560 < 163; 840 < 1; 638; 400 < 104; 857; 600

While aggregation simplifies resource management tasks, it may
introducecostsin terms of accuracy, i.e., the ability of an algo-
rithm to maximally utilize resources while also satisfying user’s
QoS constraints. We attempt to quantify such costs using the
“Perfect Knowledge Algorithm” which we develop next.



III. PERFECT-KNOWLEDGE ALGORITHM

In this section, we introduce thePerfect-Knowledge Algo-
rithm (PKA) to serve as a performance benchmark for admission
control algorithms in mobile multi-service networks. In partic-
ular, one may view an admission control algorithm as making
a sequence of admission decisions upon the arrival of each call
request, and, as described in Section II, admitting or rejecting
each call according to some resource reservation scheme. In
evaluating the performance of a particular admission control al-
gorithm, one must assess its effectiveness in making correct ad-
mission decisions, that is, whether the algorithm properly lim-
ited the handoff dropping probability to below the targetP

drop

and whether it did so while maximally utilizing network re-
sources, admitting as many calls as possible subject to the QoS
constraint.

Towards this end, we devise PKA, which, while unrealiz-
able in practice, serves its benchmarking purpose by exploiting
knowledge of future handoff events to assure that the maximal
admissible region is obtained while satisfying theP

drop

con-
straint. Thus, we can evaluate the performance and effectiveness
of a practical on-line admission control algorithm by comparing
utilization and QoS values obtained by a certain algorithm with
those obtained using the idealized PKA.

The Perfect Knowledge Algorithm operates under the follow-
ing three assumptions when performing an admission control
test for a call arriving at timet: (A1) Characteristics of calls ar-
riving at timesu > t arenot known; (A2) If the call is deemed
admissible at timet, it must be admitted and the decision cannot
be reversed; (A3) Future handoffs of the new call and all estab-
lished callsare known. Assumption (A1) and (A2) make PKA
analogous to an on-line admission control algorithm since in
both cases, future call requests are not known. With assumption
(A3), PKA differs from on-line algorithms in that (A3) allows
PKA to obtain an idealized admissible region using knowledge
of future handoff events.

The goal of PKA is to maximize a cellular network’s aver-
age utilization,U , while satisfying the empirical QoS constraint
b

P

drop

. Specifically,U is defined as the fraction of available ca-
pacity used over time, averaged over all cells

U =

P

M

j=1

P

T

t=1

C

u

(j; t)

T

P

M

j=1

C(j)

(10)

whereC
u

(j; t) denotes the capacity utilized in cellj at timet
andC(j) is the available capacity in cellj. Notice thatC

u

(j; t)

is determined by the set of users which have been admitted to
the network. The empirical dropping probability is defined as
the fraction of handoffs dropped through timet, and is given by

b

P

drop

(t) =

Ndrops(t)

Nhandoffs(t)
(11)

whereNdrops(t) is the number of failed handoff attempts, and
Nhandoffs(t) is the total number of handoff attempts by timet.

PKA, presented in pseudo-code in Figure 3, is invoked when
a new userx requests admission to the cellular network at time

ProcedurePKA (user x, profile P, timet
0

, QoSP
drop

) f
1. if (Cu[P[x].cell[t

0

]][ t
0

]+P[x].bw> C[P[x].cell[t
0

]]) f
2. BLOCK(x);
3. return;
4. g

5. newdrops=0; newhandoffs=0;
6. for (n=0; n� P[x].numhandoffs; n++)f
7. newhandoffs++;
8. for (t=P[x].handofftime[n];

t < P[x].handofftime[n]+P[x].tresid; t++)f
9. zone=P[x].cell[t];
10. if (Cu[zone][t]+P[x].bw> C[zone])
11. if (t==P[x].handofftime[n])f
12. DROP(x);
13. newdrops++;
14. break; /*Goto line 23*/
15. g

16. else if (NumHandoffs[P[x].cell[t]][t]> 0) f
17. DROP(HandOffUser[zone][t]

[Num HandOff[zone][t]]);
18. Update(newdrops,newhandoffs);
19. g

20. g

21. g

22. fracdropped = (totaldrops + newdrops)/
(total handoffs + newhandoffs);

23. Compute(BLoss,BGain);
24. if ((frac dropped� P

drop

) AND (BLoss< BGain))f
25. ADMIT(x);
26. totaldrops += newdrops;
27. totalhandoffs += newhandoffs;
28. Update(Cu);
29. g

30. else BLOCK(x);
31. return;
g

Fig. 3. Perfect Knowledge Algorithm

t

0

. The user has QoS requirementP

drop

and mobility profile
P [x] which specifies userx’s hand-off pattern and cell residence
times through the lifetime of the call. As indicated in Line 1,
PKA first checks that sufficient spare capacity is available in the
cell of call initiation att

0

, and if not, userx is blocked (Line 2).
Otherwise, subsequent time slots up to the call termination time
are tested for overload (Lines 6-21). If at any timet > t

0

in
which userx makes a handoff attempt sufficient capacity is not
available (Lines 10-11), userx’s call will be dropped (Line 12)
andnewdropsis incremented by one (Line 13).

If admitted, userx may induce handoff drops on other users
in addition to possibly being dropped itself. Such a scenario is
considered in Lines 16-19 and all such drops are tallied in Line
18. Note thatnewdropsandnewhandoffsmay not only be in-
cremented when userx induces a drop, but alsodecremented
when userx’s admission prevents a drop as a consequence of an
earlier induced drop on another user. In Line 22, the empirical



drop probability, denotedfrac dropped, is computed as the frac-
tion of handoff requests dropped (possibly includingx itself) if
userx is admitted. Next, in Line 23 PKA computesBGain, the
gain in bandwidth utilization if userx is admitted, andBLoss,
the loss in bandwidth utilization due to drops induced by ad-
mitting userx. Note that admitting an additional user does not
necessarily increase average utilization, asC

u

(j; t) may be ad-
versely affected from induced handoff drops. Finally, userx is
admitted (Line 25) iffrac droppedwill remain within the QoS
requirementP

drop

, and if there is a net gain in utilization from
admitting the user, i.e.,BGain> BLoss(Line 24). Otherwise,
userx is blocked (Line 30).
Result: PKA maximizes average utilizationU subject to as-
sumptions (A1)-(A3), while satisfying

b

P

drop

(t) � P

drop

8 t:

Proof: Let t
0

denote the time that userx initiates a call,t
h

the time that it hands off for thehth time, andb
x

its bandwidth
demand. Lett0

y

denote the time that userx comes in conflict
with usery, andt00

y

� t

0

y

denote the time at which usery’s call
terminates or is dropped, which ever occurs first. Denote the
set of such conflicting users byY . It is possible that because of
usery being dropped at timet0

y

, a userz that would have been
dropped at timet0

z

, would be able to avoid being dropped up to
time t00

z

> t

0

z

. Denote the set of such users byZ .
Let H(x) denote the number of handoff attempts of userx

during its call holding time, andH
0

the number of successful
handoffs such that if userx is not dropped,H

0

is equal toH(x).
Let t

H

0

+1

denote the time when userx is dropped or when its
call terminates. Then PKA admits userx if:

(C1) (t
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(C2)
Ndrops(t)+new drops(t)

Nhandoffs(t)+new handoffs(t) � P

drop

;8t

Therefore, at timet
0

, when an admission decision about user
x is made, condition (C1) ensures that bandwidth utilization is
maximized subject to the QoS constraint (C2).2

Thus, PKA can serve as a benchmark for evaluating the per-
formance of on-line admission control algorithms by comparing
their admissible regions with the maximal region obtained by
the idealized Perfect-Knowledge Algorithm.

For a given set of admission control decisions, we define an
on-line admission control algorithm’s PKAError Indexas

PEI=
UAC � UPKA

UPKA
(12)

to reflect the utilization error of the on-line algorithm, i.e., PEI
represents the difference in the admission decisions between
PKA and the on-line algorithm scaled to utilization. In Section
IV, we study a number of on-line admission control algorithms
under a diverse set of mobility models using PKA and the PKA
Error Index.

IV. PERFORMANCESTUDY OF MOBILE ADMISSION

CONTROL

In this section, we use an extensive set of simulation exper-
iments to study admission control and resource allocation in
mobile multi-service networks. We first illustrate the use of
the Perfect-Knowledge Algorithm as a benchmark for the de-
sign and evaluation of admission control algorithms: we study
a number of algorithms from the literature by exploring their
ability to control the admissible region relative to PKA. We also
use this study to illustrate key performance tradeoffs encoun-
tered relative to the algorithm taxonomy presented in Section
II. Finally, we consider several system parameters such as the
user mobility model, speed of the mobile units, and traffic het-
erogeneity. We study the impact of such parameters on both the
idealized PKA as well as on the performance of on-line admis-
sion control algorithms. The results of our study provide in-
sights into the admission control design considerations of great-
est impact and point to aspects of admission control algorithms
requiring further study.

Our simulation scenario as described below uses a two-
dimensional cellular network with heterogeneous traffic sources
and a diverse set of mobility models, including real-time mobil-
ity traces [16].
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Fig. 4. Cellular topology

A. Network Topology and Traffic Model

Our simulated network consists of 64 cells located in a rectan-
gular grid as depicted in Figure 4. Each cell has four neighbors,
so that handoffs take place only between cells sharing an edge,
and not just a vertex. The network wraps around such that, for
example, a hand-off to the east of cell 63 wraps to cell 56. Each
cell has capacity to support 40 Bandwidth Units (BUs).

Mobile calls originate from a uniformly random location at
a Poisson rate of 1 call per minute per cell. Traffic demands
consist of four classes requiring 1, 2, 4, and 8 BUs. The respec-
tive probability that a new call belongs to one of these classes
is 0.5, 0.3, 0.1 and 0.1. Unless otherwise noted, time is slotted
to 1 minute and calls have a geometrically distributed duration
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Fig. 5. Cell-occupancy vs. Spatial-mobility distribution
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Fig. 6. Impact of mobility speed (or cell residence time)

with mean 12 minutes; cell residence time is geometrically dis-
tributed with mean 12 minutes. Simulations are performed for
6 hours of simulation time with a large number of call arrivals,
departures, and handoff attempts. In each plot, 95% confidence
intervals are within 2 bandwidth units or 5% utilization, and are
not shown.

In order to study the impact of user mobility patterns on ca-
pacity allocation, we use the following five mobility models in
our simulations: (1)Multihop random: at each handoff the user
is equally likely to move in each of four possible directions.
(2) Hierarchical highway: the cellular network has an overlay
of “highways”, or a set of mobility patterns that users are more
likely to follow, with H1 indicating major highways and H2 in-
dicating less popular roads. (3)Destination model: users move
toward a uniformly random location chosen when the call is ini-
tiated; the probability of handing off in a particular direction
is weighted according to the shortest path to the destination.
(4) Downtown model: the four contiguous cells 0, 7, 56, and
63 are regarded as a downtown area, and mobile users are highly
likely to have a destination within this area. (5)Real-time mobil-
ity traces: users move according to traces of the San Francisco
Bay Area (voice) cellular network [16]. In this case, we use the
actual Bay Area cellular network topology rather than that of
Figure 4, and in the experiments, modify the traces to include

calls with higher bandwidth demands than a voice call. Further
details of these models may be found in [6].

B. Illustration of PKA Benchmark and Taxonomy

The goal of a call admission control algorithm is to utilize
available resources as efficiently as possible such that the QoS
demand is satisfied. To evaluate the performance of admission
control algorithms, we compare their performance with that of
PKA, which achieves a maximal admissible region while main-
taining the requiredP

drop

. The PKA Error Index (PEI), as pro-
posed in Section III, can be used as a measure of accuracy of
an admission control algorithm. We consider two admission
control algorithms representative of two classes of our taxon-
omy: cell-occupancy ([1]), and spatial mobility ([7]). Figure
5(a) shows the average bandwidth utilization of the two algo-
rithms, and also of PKA. Notice that the two online admis-
sion control algorithms, representing two fundamentally differ-
ent classes of the taxonomy, are conservative, particularly for
low P

drop

. It may be noted that while PKA assumes knowledge
of the complete profile of a user, the two online algorithms use
only the mobility/occupancy distributions. The PEI vs.P

drop

plot in Figure 5(b) suggests that forP
drop

< 0:01, the two on-
line algorithms are almost 10% to 25% more conservative as
compared to the PKA. The spatial-mobility allocation converges
to the PKA performance forP

drop

> 0:0025, and outperforms
the cell-occupancy allocation by 20% on the PKA Error Index,
illustrating the potential accuracy gains of finer granularity of
resource control.

C. Design Issues for Admission Control

Among the system parameters to be considered for designing
mobile admission control algorithms are the mean call holding
duration, the mean cell residence time (which is related to the
speed of mobility of the users), the new call arrival rate, the mo-
bility pattern (which determines the correlation in the occupancy
levels of neighboring cells), and the heterogeneity of the users in
demanding different classes of services requiring different band-
widths. Below, we use the simulation set-up described in Sec-
tion IV-A, and, unless otherwise noted, we assume a destination
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Fig. 8. Impact of call arrival rate

model with geometrically distributed call holding duration and
cell residence time, with a mean of 12 minutes for both.

To investigate the impact of themobility speed, we generate
several traces varying the mean cell residence timet

r

from 8 to
16 minutes (keeping the mean call holding timet

h

the same at
12 minutes). Figure 6 shows the average bandwidth utilization
versusP

drop

for the spatial mobility allocation. Observe that
with increasingt

r

, the utilization is higher for the sameP
drop

.
Thus, for higher speed of mobile users, the utilization decreases.

We vary the meancall holding timet
h

from 8 to 16 minutes
(keeping the mean cell residence timet

r

at 12 minutes). From
Figure 7(a), observe that the average bandwidth utilization is
almost the same for the range of the call holding time consid-
ered. Thus, it depends only on the mean cell residence time, and
not the call holding time. However, Figure 7(b) indicates that
with longer duration of the calls, the number of calls blocked
increases without affecting the utilization, implying that the rate
of handoff is far more important than the cumulative number of
handoffs.

To investigate the impact of thecall arrival rate, we perform
simulations with cell-occupancy allocation by varying the call
arrival rate from 0.68 calls/cell/minute to 1.16 calls/cell/minute.
From Figure 8, observe that an increased call arrival rate in-
creases the blocking probability, while the average bandwidth

utilization remains nearly the same. Spatial mobility alloca-
tion and PKA also exhibit similar trends, indicating that for a
new call arrival rate above a certain threshold, the average band-
width utilization does not increase, while the blocking probabil-
ity does.

In the experiments described in Figure 9, we investigate the
impact of themobility patternusing the traffic models described
in Section IV-A. Figure 9 illustrates how the average bandwidth
utilization depends on the mobility pattern. It shows that the av-
erage bandwidth utilization for the downtown model is almost
20% higher than for other models. The destination model mobil-
ity pattern also decreases utilization by 4% to 5% as compared
to the highway and the random hop mobility models. Thus, we
can conclude that the mobility pattern is an important issue in
the design of admission control algorithms as it reflects the im-
portance of the systems’ spatial correlation structure.

To investigate the impact of theheterogeneityof the traffic,
we vary the variance of the bandwidth demanded per call while
keeping the mean bandwidth per call the same. From Figure
10, observe that with increased heterogeneity of the traffic, the
average bandwidth utilization decreases significantly.

Finally, Figure 11 shows the results for trace-driven simula-
tions using real-time mobility traces. We observe that both al-
gorithms are again conservative for smallP

drop

, although the



spatial-mobility allocation algorithm converges to PKA’s uti-
lization. Moreover, the spatial mobility allocation outperforms
the cell-occupancy allocation.
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V. CONCLUSIONS

In this paper, we first devised a taxonomy of admission con-
trol algorithms to explore the structure and design issues en-
countered in algorithm design, and together with simulation ex-
periments, we quantified the fundamental tradeoffs between an
admission control algorithm’s accuracy and granularity of re-
source control. We next designed a Perfect Knowledge Admis-
sion Control Algorithm and showed how it exactly controls the
admissible region to serve as an ideal benchmark for evaluat-
ing practical on-line algorithms. Finally, we performed an ex-
tensive simulation study using a suite of mobility models and
traces. We applied the taxonomy and PKA and explored a num-
ber of admission control design issues. We found for example,
that algorithms from the literature can be quite conservative in
certain environments such as high spatial correlation of user lo-
cations (such as in a “downtown” mobility model) and stringent
QoS constraints on the probability of handoff drop. Our study
thus serves as a framework for designing admission control al-
gorithms that support guaranteed quality of service in wireless
and mobile networks.
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Fig. 11. Real-time mobility trace simulation
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