
Virtual Speed Test:
an AP Tool for Passive Analysis of Wireless LANs

Peshal Nayak ∗, Santosh Pandey †, Edward W. Knightly ∗
∗Rice University, USA, †Cisco Systems, USA

Abstract—Internet speed tests assess end-to-end network per-
formance by measuring throughput for 10s of MB of TCP
uploads and downloads. While such tests provide valuable
insights into network health, they are of little use to network
administrators since (1) the results are only available on the
client that performs the test and (2) the tests can saturate
the network, increasing load and worsening performance for
other clients. In this paper, we present virtual speed test, a
measurement based framework that enables an AP to estimate
speed test results for any of its associated clients without any
special-purpose probing, with zero end-user co-operation and
purely based on passively observable parameters at the AP.
We implemented virtual speed test using commodity hardware,
deployed it in office and residential environments, and conducted
measurements spanning multiple days having different network
loads and channel conditions. Overall, virtual speed test has mean
estimation error less than 6% compared to ground truth speed
tests, yet with zero overhead, and outcomes available at the AP.

I. INTRODUCTION

TCP speed tests are end-to-end tests of network health and
are available via a plethora of online apps [1], [2], [3]. As part
of the measurement process, a client performs an active TCP
download and an active TCP upload to a server to measure the
download and upload TCP throughput respectively. Since more
than 80% of current Internet traffic is transmitted via TCP [4],
the performance of numerous online applications is crucially
dependent on the maximum TCP throughput achievable over
an underlying network path.

If a client’s speed test uses a nearby server (i.e., a server with
minimum possible latency to the AP), the WLAN becomes
the key part of the end-to-end path. Consequently, the results
would be valuable to the network manager to assess WLAN
performance and make decisions on network infrastructure
alterations to improve the quality of service experienced by
the end user. However, the results can only be seen by the end
user and are unavailable to the administrator without seeking
end user co-operation. Moreover, regularly performing such
speed tests imposes additional traffic load on the network and
hence doing so can potentially disrupt user traffic and drain
the battery of mobile devices.

In this paper, we make the following contributions. First,
we present a framework that enables an AP to estimate the
outcome of a speed test, i.e., the upload and download TCP
throughputs that any of its associated STAs should obtain
from a nearby server, yet, without any special-purpose probing,
with zero co-operation of endpoints (i.e., the server and the
client), and solely based on measurements that are passively

observable at the AP. We call our measurement based frame-
work virtual speed test. The speed test results obtained by
a STA can vary over time depending on numerous factors
such as the number of active STAs, interference level, etc.
Likewise, virtual speed test can enable the network manager to
dynamically track any given STA’s speed test results based on
its own unique characteristics (e.g., via a dynamic dashboard).

Virtual speed test employs a novel L2 edge TCP model
to perform throughput estimation. The key challenge for the
AP to estimate these inherently bi-directional, end-to-end and
layer-4 throughputs, is that the AP only has a limited view
of the network. Since the AP is unaware of the presence of
hidden terminals, interference from neighboring BSS to the
STAs, etc. (which affect the STA’s queuing delays, NAV timers
and packet retransmissions), the AP cannot estimate how long
it takes a STA to successfully transmit after it starts to attempt.
Our design is motivated by the fact that since the WLAN is
the final hop for any TCP segment directed towards a STA,
this duration can also be estimated by measuring the delay
incurred between the transmission of a TCP segment on the
downlink to the reception of the corresponding TCP ACK on
the uplink from the STA. This TCP segment, therefore, can
belong to any TCP flow (e.g., a Netflix video stream) and need
not be a part of a flow from a nearby server. To carry out these
measurements, the AP must identify TCP flows. To this end,
we leverage TCP’s inherent bi-directionality and packet size
signatures to spot TCP flows. Specifically the fact that TCP
flows involve TCP segment traversing on the forward path and
small sized TCP ACKs on the reverse path enables the AP to
identify these flows and perform its measurements.

Second, we develop a virtual speed test enabled AP (VST
AP) by using commodity hardware. We build APIs that enable
the VST AP to passively collect a number of per packet
statistics and feed them into the L2 edge TCP model to
obtain throughput estimates. While virtual speed test does
not require collection of STA-side statistics, for validation
purposes, we also implement APIs for data collection from
STAs associated with the VST AP for characterizing the
operating environment and for ground truth measurement.
We deploy VST AP in two environments: an office located
inside a university building and an apartment in a residential
complex. The VST AP is deployed in the office for a period
of 2 days and in the apartment for a period of 7 days. Both
deployment settings are characterized by interference from
non-BSS devices co-existing in the same frequency band,
human mobility and link diversity with respect to signal

Co-managed AP 2Co-managed AP 1

Non-managed AP

Fig. 1: Enterprise WLAN scenario: bold lines indicate connectivity while
dotted lines indicate interference.

propagation (i.e., LoS vs non-LoS paths) and supported PHY
rates. The office and the residential scenario cover a total
of 36 and 49 topologies respectively with a varying number
of STAs. Overall, the VST AP observes a total of 113,047
TCP flows across both deployments. These TCP flows result
from multiple applications running on end devices such as
video streaming, music streaming, pdf downloads and email
activities. For validation, actual client-based speed tests are
employed as ground truth. Virtual speed test demonstrates a
high level of estimation accuracy compared with ground truth,
with average estimation error under 6% for both upload and
download speed estimation.

Finally, we implement virtual speed test into ns-3’s source
code and perform extensive simulations to investigate operat-
ing conditions beyond those encountered in our field trials.
The simulation results concur with field trial conclusions
demonstrating estimation errors below 5%.

To the best of our knowledge, virtual speed test is the first to
estimate both upload and download TCP throughputs of STAs
in the network by using passive measurement metrics at only
the access point, i.e., without any active probing, additional
hardware infrastructure or user participation.

II. VIRTUAL SPEED TEST: SCENARIO DESCRIPTION AND
PROBLEM FORMULATION

A. Enterprise WLAN setup

We consider an enterprise WLAN environment such as
illustrated in Fig. 1. As depicted, the network comprises of
multiple APs. While the network may use channelization, for
ease of exposition we consider only APs with at least partially
overlapping channels such that they can potentially interfere
with each other. Moreover, we consider that in addition to
the managed infrastructure, there may be one or more non-
managed WLANs that may be interfering. Such WLANs can
correspond to an LTE hot spot or a neighboring WLAN under
different administrative control.

Ideally, all such networks should have sufficient physical
separation to enable full spatial reuse for each AP (i.e., simul-
taneous transmission for each network). However, as depicted,
the unwanted interconnectivity creates interference and con-
tention among nodes. Moreover, inter-node connectivity can
form a complex relationship: while all STAs are necessarily
connected to the APs that they associate with, a particular STA

may or may not be in range of other APs. Likewise, STAs may
be hidden from each other or mutually in range. It is further
possible that a STA is in range of other APs which are not
in range of the AP that is serving it. The interference and
contention possibilities are further compounded by the need
to consider both downlink transmissions (AP to STA), uplink
transmissions (STA to AP), and mixes.

We do not make any assumptions about the PHY layer
capabilities of the AP or the STAs. For instance, the AP may
have advanced physical layer capabilities such as multi-user
MIMO. Likewise, the AP can have any channelization strategy,
e.g., dynamically bonding channels to 80 MHz as available.

B. Background on TCP upload and download speed test

Speed tests measure a client’s upload and download TCP
throughput from a server on the internet.1 If the speed test
happens from a nearby server or low latency server, the WLAN
becomes the key part of this end-to-end path and the network
manager can use these results to assess WLAN performance.
For the remainder of the paper, we focus on speed tests that
happen from a nearby server. A speed test is user initiated and
the results are visible to the user at the end of the measurement.
Speed tests primarily consist of two phases: a setup phase
during which the speed test parameters are configured and a
measurement phase which involves an active TCP upload and
download.

Setup phase. The setup phase begins with a server selection
process which can either be manual or app driven. If this
is app driven, a server is selected by probing a pool of
available servers such that the backbone delay between the
server and the AP is as less as possible to ensure a maximum
TCP throughput [5] (with the ideal case being a server in
the same LAN as the AP). Since the goal is to measure
the maximum TCP throughput, while running a speed test,
a STA is recommended to turn off other applications. Next,
the client and server side TCP parameters are configured. The
exact mechanism used for performing this configuration differs
from one speed test application to another. A commonly used
procedure is to conduct a test download and a test upload
from the STA. For instance, for the Ookla speed test, the STA
initially downloads or uploads a small file to estimate initial
throughput. Following this initial phase, the STA adjusts the
file size, buffer size and number of parallel TCP flows (limited
to maximum of 8) to maximize the network connection usage
while preventing congestion during the measurement phase
[6].

Measurement phase. As shown in Fig. 2, the measurement
phase consists of two sessions: an upload session and a down-
load session. The vast majority of speed test apps available
online follow a flooding based mechanism in these sessions
which involves establishment of several parallel TCP flows
between the server and a STA with a calculation of aggregate
throughput across all the flows [7]. This ensures that the results
are robust to a small TCP window size (e.g., due to loss of a

1Unless stated explicitly, the terms client and STA are used interchangeably.

AP

STA1

STA2

STA3

Server 1

Backbone
Network

Server 3

Server 2
TCP download

TCP upload

download
throughputupload throughput

wired wireless

Fig. 2: Illustration of an upload and download speed test: here STA 1 performs
a speed test. Server 1 is selected from a pool of servers consisting of server
1, 2 and 3. Here server 1 has minimum backbone delay to the AP.

TCP segment or a small advertised receive window size) [8].
The number of parallel flows to be established is determined
in the setup phase. During the upload session, a STA performs
an active upload to the selected server and measures the TCP
throughput by averaging the total data transmitted end-to-end
over the total time taken. During the download session, the
STA performs an active download and measures throughput
in a similar fashion.

C. Virtual Speed Test: High level problem definition

Analogous to online speed tests, our goal is to realize a
virtual speed test that enables an AP to estimate the TCP
download and upload throughput that a STA can achieve from
a nearby server. As described in our network scenario, an
AP can have an arbitrary number of STAs associated with
it and the AP should be able to estimate the throughput
for any of the associated STAs. The speed test results of a
STA can vary as driven by factors such as number of active
STAs, interference level, etc. Likewise, we target that virtual
speed test also tracks the speed test results for a given STA
based on its own unique characteristics. Note that the STA
does not perform the actual speed test. The AP is required to
make the prediction using only passively collected information
available on the AP side whereas no reports are available from
STAs and out-of-network APs. Further, we consider that no
additional commands can be required of STAs, e.g., STAs
cannot be requested to send packets for testing purposes.
Moreover, STAs cannot be requested to download special
purpose software or report STA-side measurements. Instead,
we consider that by leveraging AP-side observables, the AP
can estimate the following metrics [9].

Aggregate AP metrics. We consider that the AP can
measure the airtime usage due to transmission and reception,
defer time, contention time, idle time (no backlogged downlink
traffic) as well as byte counts for downlink and uplink frames.

Per-STA metrics. Likewise, while the STAs do not report
STA-side statistics, the AP can observe some per-STA metrics
at the AP such as uplink RSSI and SNR, downlink and uplink
MCS and PHY parameters including use of advanced PHY
features such as channel bonding, spatial multiplexing, multi-
user transmission and downlink retransmission statistics.

Non-associated device metrics. Lastly, the AP may be in
range of a number of non-associated 802.11 devices that are
transmitting on a different BSS. When the AP is forced to
defer to a non-BSS device, it can record interferer air time
consumption.

While the above may appear to be an exhaustive set
of information for performance characterization, there are a
number of STA-side metrics that remain unobservable by the
AP. For instance, the AP does not know the STA’s idle times
or the STA’s defer times due to NAV especially when the STA
is deferring to a non-BSS device. Since the network scenario
considers a complex inter-node connectivity which may lead to
inter-cell interference, hidden terminals, etc., these parameters
cannot be directly calculated based on the metrics mentioned
above. However, the throughputs that we want the AP to
estimate are inherently bi-directional, end-to-end and layer-
4 and can indeed be degraded by the above factors. To this
end, we infer the impact of these unknowns using the above
AP-side observables with the help of techniques described in
Section IV.

III. L2 EDGE TCP MODEL

To enable an AP to estimate the upload and download
throughputs that a STA would obtain if it performs a speed
test, we develop a novel L2 edge TCP model that uses AP-side
observables as inputs.

A. Assumptions for mathematical analysis

Here, we state the key assumptions that we make to capture
important aspects of the aforementioned speed test setup and
measurement phases in our model.

In the measurement phase of an actual speed test, multiple
TCP flows are initiated between the server and the client so
that the measurement phase is not bottlenecked by the number
of circulating TCP segments. Instead, we model this by
representing the packet flow dynamics by a single long lived
TCP flow with a maximum congestion window size of Wm

which is large enough so that there are a sufficient number of
TCP segments circulating in the network. We further assume
that this flow does not experience any permanent packet losses.
This is not to say that collisions or packet errors do not occur
on the wireless channel. Rather, packets lost on the wireless
channel are locally retransmitted by the MAC layer and we
do account for these collisions and retransmissions in our
analysis. We hereby refer to this modeled flow as the speed
test flow, the STA under consideration as the target STA and
the remaining STAs as non-target STAs.

In an actual speed test, the server selection process in the
setup phase selects a server with minimum latency to the AP
to reduce the impact of backbone elements on the measured
results. Consequently, we consider backbone congestion and
delays as factors that do not impact the throughput. Also, recall
that the parameters of the TCP flow used during the speed
test are adjusted by the STA based on an initial measurement
performed to ensure that TCP does not drive the network into
congestion.

B. Virtual end point representation

The discussions in this sub-section are mainly in the con-
text of a download speed test. However, the arguments and

explanation are applicable to upload speed tests as well and
will be generalized later.

In the network scenario of Fig. 1, there are no restrictions on
the traffic flows of non-target STAs and STAs in neighboring
BSSs and they may have UDP and/or TCP traffic going on
the downlink and/or the uplink. Further, the number of these
flows per device can also be variable and differ from STA
to STA. Since we make no assumptions about the network
topology, interfering links or the type or number of flows, it is
not possible to state precisely the inputs for a queuing model.
We remark that a majority of TCP models for Wi-Fi require
AP-side knowledge of network topology, interfering nodes
including those from neighboring BSSs, their traffic patterns,
PHY capabilities, data rates, etc. Removing this requirement
is vital to the realization of virtual speed test.

The modeled speed test flow comprises both its TCP seg-
ments and TCP ACKs. First, we analyze the speed test flow by
considering the journey of a speed test flow segment from the
server to the target STA. On the forward path, a TCP segment
experiences delays on the queues of devices on the backbone.2

When the packet enters the queue at the AP, it encounters
another delay before reaching the head of the queue, part of
which arises from the AP serving non-speed test flow packets.
We denote the average amount of time the AP spends on non-
speed test flow packets prior to serving a speed test flow packet
by V . Upon reaching the head of the queue, the AP begins
to contend to access the channel. It is possible that as the AP
counts down, the target STA or a non-target STA or another AP
wins the channel, causing the AP to defer. It is also possible
that a transmission from the AP fails either due to collision or
poor channel quality, forcing the AP to double its contention
window size and re-contend and transmit (with the same or
adapted data rates3). We denote the mean time the AP takes
to win the channel prior to a successful transmission by daccess

as shown in Fig. 3. Notice that the value of this parameter
can vary depending on the STA being considered as the target
STA. The average amount of time to transmit the TCP segment
is represented by dtx. This includes any MAC and physical
layer overhead, MAC frame transmission time, all interframe
spacings and the MAC layer acknowledgement. Just like the
TCP segment, the TCP ACK also faces a similar journey back
to the server. The terms uaccess and utx are defined in a similar
manner for the target STA.

For our analysis, we represent the WLAN (AP and STAs) as
a virtual end-point consisting of two queues: a forward queue
and a reverse queue. For now, let us assume that the non-
speed test flows are non-existent and that only the speed test
flow packets exist in the WLAN (we subsume the impact of
non-speed test flow packets into the model parameters later).
With this consideration, we can treat the virtual end point
as a black box replacing the WLAN that runs a speed test.
The socket level TCP client (not to be confused with the
physical STA) runs on the virtual end point itself as shown

2A example cause of these delays is that due to cross traffic sharing a
common queue on the backbone with the TCP segment.

3The exact rate adaptation policy is vendor implementation dependent.

defer

STA1 TX

STA2 TX

AP TX AP TX

defer

TCP segment reaches head of AP’s
queue. AP begins to contend

collision

TX start TX end

successful
transmission

dtx,idaccess,i

AP

STA 1

STA 2

Fig. 3: Example timeline of a downlink transmission to depict daccess,i and
dtx,i. daccess,i and dtx,i denote the ‘access’ and ‘tx’ values respectively for the
ith downlink transmission. daccess and dtx denote their mean values.

TC
P

 s
er

ve
r

TC
P

 c
lie

n
t

Virtual end pointBackbone

Forward queue

Reverse queue

Svf

Svr

Sbf

Sbr

Backbone queues

Speed test flow
TCP segment

Speed test flow
TCP ACK

Fig. 4: WLAN representation as a virtual end point consisting of a forward
and a reverse queue. The TCP client here refers to the socket level client and
is not to be confused with the physical STA itself.

in Fig. 4. We can think of TCP segments and TCP ACKs as
jobs circulating in the network. The service time of each job
is a sum of its ‘access’ term and its ‘tx’ term. E.g., for jobs
in the forward queue, the service time is a sum of daccess and
dtx. Since we account for the ‘tx’ term in the service time
itself, the jobs themselves become indistinguishable. As we
have not yet subsumed the effect of non-speed test flows, the
throughput of the virtual end point is not the same as that of
the target STA in our WLAN.

In our second step, we account for the impact of non-
speed test flow packets on the throughput of this system
by inflating the service times of each queue to account for
the non-speed test flow packets. In essence, this inflation
makes the effective speed of each server as seen by the
speed test flow packet in the virtual end point system the
same as that in the original system where some server time
should have been consumed by non-speed test flow packets
as well. Consequently, on the forward queue, the service time
is inflated by V . However, since the target STA has no other
uplink traffic while performing a speed test, the reverse queue
service time requires no inflation. Similarly, we can subsume
the impact of cross traffic on the backbone queues into their
respective service times.

C. Throughput analysis

To analyze the throughput of the network shown in Fig. 4,
we consider two cases. First we consider a case wherein TCP
performs no ACK thinning. Consequently, in this case, each
TCP segment received by the STA results in the generation
of a TCP ACK. Next, we generalize this to account for the
case of ACK thinning with an ACK thinning ratio of n. In this
case, the client generates a TCP ACK following the receipt of
every nth TCP segment.

1) No TCP ACK thinning: Ignoring the initial transient
stage during which TCP’s window size grows, the speed test

flow will reach a steady state wherein TCP operates at Wm.
Consequently, the number of packets that are contained in the
speed test flow, which can either be TCP segments or TCP
ACKs, remain constant and the system behaves as a closed
queuing network with tandem servers and a constant number
of jobs circulating inside it.

Based on the aforementioned notations, the mean service
time for the forward and the reverse queue in the virtual end
point (Fig. 4) is given by:

Svf = daccess + dtx + V (1)
Svr = uaccess + utx (2)

Let S = Sbf + Sbr + Svf + Svr, Smax =
max(Sbf , Sbr, Svf , Svr) and θ denote the throughput in
terms of jobs per second. It can be shown [10] that

θ ≤ min

(
Wm

S
,

1

Smax

)
(3)

where Wm
S is an asymptotic bound for small values of Wm and

1
Smax

acts as an asymptotic bound for large values of Wm. The
cases of small and large here are relative to a critical value
W ∗m which is the point at which the asymptotes cross each
other. Consequently,

W ∗m =
S

Smax
(4)

To understand the physical relevance of the two components
of Eq. (3), let us consider two extreme case scenarios. Let
us assume that Wm = 1 which makes the number of jobs
circulating in Fig. 4 the botteneck. The throughput, therefore,
is given by Wm

S . On the other extreme, if Wm is sufficiently
large (again large as compared to W ∗m) to not bottleneck the
system, then the slowest queue acts as a bottleneck. In this case
the slowest queue always remains busy and in accordance with
the utilization law, θ = 1

Smax
.

Recall that due to the server selection process, Sbr and Sbf
are not the bottleneck in the system. To understand the typical
values that W ∗m can take, let us consider the critical point
wherein Sbr = Sbf ∼ max(Svf , Svr). Substituting in Eq. (4),
we will get W ∗m =

2∗(Svf+Svr)
max(Svf ,Svr)

. The maximum value of W ∗m
occurs when Svf = Svr and thus max(W ∗m) = 4. In practice,
Wm � 4 and consequently, we can see that θ ≤ 1

Smax
will act

as a asymptotic bound on the values of θ. In fact, we find in
our experimental evaluation that for a typical speed test, the
values of Wm is extremely large as compared to 4 and θ will
tend to the bound yielding

θ ∼ 1

Smax
. (5)

2) TCP ACK thinning: Now, we extend the above to
the more general case of TCP ACK thinning. For an ACK
thinning ratio of n, we can view a maximum of only Wm

n
jobs circulating in the system and the remaining jobs can
again be accounted for by further inflating the service times
of each of the queues (just as for non-speed test flows).
Consequently, when the wireless nodes transmit only one

frame per transmission, the service times of both the forward
and reverse queue in the virtual end point stretch by an amount
equal to (n−1)×(daccess +dtx +V) for the case of the download
speed test. Here we inflate the service time of the reverse queue
to account for the fact that the TCP ACK is not generated until
the nth TCP segment is received. The numerator of Eq. (5)
should also be multiplied by n to compensate for the shrinking
of the total number of TCP segments. For the upload speed
test, the service times stretch by (n−1)×(uaccess+utx). However,
when the nodes transmit multiple frames per transmission,
such an inflation is not necessary since the STA receives
multiple TCP segments in a single downlink transmission and
there is no additional delay in the generation of a TCP ACK.
These multiple frames may be transmitted using frame aggre-
gation in single stream transmissions (e.g., SISO) or by using
multi-stream transmissions (e.g., MIMO) or a combination of
both frame aggregation and multi-stream transmissions. We
emphasize that this is possible since typical ACK thinning
ratios of TCP are much smaller than the number of frames
that can be transmitted in a single transmission via the above
mentioned policies under 802.11 [11], [12], [13], [14].

In summary, the throughput in bits/sec is given by

θdl =
E[TCP segment size]× FAP

max(Svf , Svr)
(6)

θul =
E[TCP segment size]× FSTA

max(Svf , Svr)
(7)

where we denote θdl and θul as the download and upload TCP
throughputs respectively. FAP denotes the average number of
frames transmitted by the AP in a single downlink transmis-
sion to the target STA. For the case of the upload speed test,
we use FSTA instead.

Note that while calculating Svf and Svr for Eq. (6), dtx

is the average time to transmit FAP number of TCP segments
at the AP’s data rate and utx is the average time to transmit
FSTA number of TCP ACKs at the target STA’s data rate. In
Eq. (7), this is reversed since the target STA is now the one
transmitting TCP segments and the AP is the one transmitting
the TCP ACKs. Svf and Svr further vary depending on which
STA is chosen as the target STA. Consequently, the AP has
to estimate these two parameters with respect to the particular
STA that is chosen as the target STA.

We remark that while the L2 edge TCP model needs to be
supplemented with AP-side measurements, it is not restricted
by a requirement for AP-side knowledge of inter-node con-
nectivity or an assumption on network traffic characteristics.
Next we show how the model parameters are estimated.

IV. OBTAINING AP-SIDE MEASUREMENTS

In this section, we show how the AP can measure all of the
parameters required for the above model, thereby enabling a
dynamic AP-side speed test estimate for each STA.

A. AP-side estimation problem

We observe that Eq. (6) and (7) are independent of Sbr and
Sbf . To estimate θdl and θul at the AP, the key challenge is

computation of Svr, as the remaining parameters are based on
common AP side observables described in Sec II-C. Recall
from Eq. (2) that Svr is composed of utx and uaccess. While
the average uplink transmission time utx is known to the AP
via per-STA metrics, the uplink access time uaccess is known
only at the STA side. Let tU,ihq denote the time at which the ith

uplink packet reaches the head of the STA’s queue, tU,its denote
the start time corresponding to the successful transmission
of this packet and tU,ite denote the end time of this packet
transmission. By definition, uaccess = E[(tU,its − tU,ihq)]. While the
AP can observe tU,its for any uplink transmission, tU,ihq remains
unknown. If the STA is assumed to be fully backlogged, the
end time of the previous transmission can be approximated
to be the time when the next packet reached the head of the
queue. However, STA backlog is user activity dependent and is
not known to the AP. As a result, the AP cannot estimate uaccess

by a simple observation of packets received on the uplink.

B. Snooped handshakes for estimation of uplink access time

Suppose that the client is performing a TCP download
from a server (e.g., streaming a Netflix video). This can be
any server on the internet with any backbone delay to the
AP. The client will attempt to return a TCP ACK as fast as
possible after reception of the corresponding TCP segment.
This TCP ACK is “data” at layer 2. For now, consider a
case where there are no other flows on the uplink from the
target STA and no ACK thinning. Since the WLAN is the
final hop for the TCP segment, upon reception of a TCP
segment, i.e., at the end of the AP’s successful downlink
transmission (denoted by tD,ite), the STA has the corresponding
TCP ACK and begins to contend. Consequently, in this case,
tU,ihq = tD,ite and thus the AP will have inferred a parameter
that is not directly observable. In essence, the delay incurred
between the transmission of the segment to the reception of
the TCP ACK enables the AP measure how long it takes the
STA to successfully transmit after it starts to attempt. Thus,
our general approach is to selectively sample TCP data-ACK
handshakes from any TCP download performed by the target
STA and use them to drive a measurement based prediction
of θdl and θul. We refer to such TCP flows as snooped flows.

This can be generalized under a flow hypothesis (i.e.,
knowing that a given flow on the downlink is a TCP flow)
by the following two cases.

ACK queuing. This case occurs when the target STA has
other uplink flows whose packets get queued prior to the TCP
ACK. Consequently, in such scenarios, tU,ihq = tU,i−1te . In such
cases, we abuse the term tU,i−1te to refer to the end time of
transmission of the immediately preceding uplink packet.

ACK immediate. However, if the target STA has no other
uplink flow, it begins to contend as soon as the TCP ACK
is queued. Consequently, tU,ihq = tD,i∗nte where the superscript
‘D’ refers to a downlink transmission.

C. TCP flow inference

Because the layer four handshake is needed to estimate
uaccess, it is crucial to identify this handshake at the AP, which

does not have layer four visibility. To this end, we employ IP
addresses and size signatures as follows.

IP address signature. Due to the inherent bi-directionality
of TCP, the source and destination addresses for TCP segments
traversing on the forward path are swapped for the correspond-
ing TCP ACKs on the reverse path. This key factor enables us
to distinguish individual TCP flows and separate them from
the remainder of the downlink and uplink traffic.

Packet size signature. Although the above signature
enables identification of a bidirectional flow, it does not aid
in spotting the forward and reverse paths distinctly. While the
size of TCP segments on the forward path may fluctuate during
the course of a download, the reverse path is characterized
by small TCP ACKs whose size remains fixed during the
entire duration of the flow. Typically a TCP ACK is 20
bytes long [15]. Having distinctly identified the forward and
reverse paths, the AP can employ the uaccess estimation process
described in the previous sub-section.

V. IMPLEMENTATION AND EXPERIMENTAL
METHODOLOGY

In this section, we provide details of the virtual speed test
enabled AP (VST AP), field trial details and our ground truth
procurement methodology.

A. VST AP characterization

VST AP runs on a Linux operating system and is factory
installed with 32 GB DDR4 SO-DIMM RAM, 2.4 GHz dual
core CPU with a Gigabit LAN port. It is equipped with a
Ralink RT3070 off-the-shelf WiFi chipset. The radio card
supports IEEE 802.11b/g/n utilizing up to 40 MHz bandwidth
and a peak PHY rate of 300 Mbps. To enable throughput
estimation, we build APIs that enable the acquisition of a
number of per packet statistics at the AP. Specifically, VST
AP collects packet timestamps (available on a nanosecond
granularity), source and destination IP addresses, frame sizes,
and PHY rates using these APIs and feeds them into the L2
edge TCP model to estimate the throughput. As described
earlier, the parameter estimation methodologies employ packet
timestamps as a part of the computation process. While the
absolute value of these timestamps can be impacted by sys-
tem dependent offsets, their post-subtraction residue becomes
negligible as they have a low second moment. The STAs asso-
ciated with the VST AP are a mix of portable laptops running
on either Windows or Linux OS whose network interface card
supports 802.11b/g/n as well. While VST does not require
collection of STA side statistics, for validation purposes, we
also implement APIs and data collection capabilities for STAs
associated with the VST AP to enable us to characterize the
operating environment.

B. Field trials

To study the estimation accuracy of virtual speed test, we
deploy VST AP and STAs in two environments. The first
deployment is in an office located in a 3 storied building on
a university campus. In this deployment, the VST AP and

its associated STAs co-exist with a university administered
enterprise network and 2 BSS deployed in nearby offices.
We deploy a second network in an apartment in a 3 story
residential building primarily consisting of 1 or 2 bedrooms
per unit. These devices coexist with BSS from neighboring
apartments. In each environment, the traffic generated by co-
existing BSS is not controlled by us and is determined by user
activity in those BSS. The VST AP deployed in the office
performs measurements for a period of two days whereas the
residential scenario measurements are carried out for a period
of one week. During the entire duration of deployment, the
VST AP observed a total of 113,047 snooped flows. These
flows are generated by STAs associated with the VST AP
which are instrumented to run web applications such as video
streaming (via YouTube), music streaming (via Pandora), pdf
downloads (via IEEE Xplore) and sending and receiving
emails (via Gmail). The number of these applications running
in parallel for each STA is also varied thereby generating
cases of both single as well as mixed application traffic
with a varying number of parallel running applications. The
STAs use Mozilla Firefox web browser for performing these
online activities. Aside from the applications mentioned above,
some of the STAs have Dropbox installed on them which
occasionally adds to the uplink traffic from these devices in
addition to that generated by email activities.

It is important that virtual speed test is accurate in the
presence of variation of the empirical L2 edge TCP model
parameters which are affected by traffic characteristics, active
STA count, MAC and PHY statistics, etc. Post processing
traffic traces reveals that the application layer data size varied
from a minimum of 20 bytes to a maximum of 1.4K bytes.
Overall, the office and residential scenario covered a total of 36
and 49 different topologies respectively with a varying number
of STAs associated with the VST AP in each topology and the
VST AP made predictions for each associated STA. The total
number of associated STAs in a topology varied between 1
and 6 in the office scenario and 1 and 7 in the residential
scenario. The activity in the neighboring BSS varied in both
the deployment. For instance, during approximately 30% of
the flows in both the office and the residential scenario, there
was no activity on the neighboring BSS. On the other hand, the
maximum portion of a TCP flow’s duration that a STA spent
deferring to neighboring BSS was 38.8% for the residential
scenario and 51.4% in the office scenario. Further details
about the deployment can be found in our companion technical
report available at [16].

C. Iperf for ground truth procurement

We compare the outcome of virtual speed test with that
obtained from online speed test applications [1], [2], [3] as
well as iperf. We focus on iperf for procuring ground truth
as online tests are subject to an additional and uncontrolled
source of variation due to server selection. Namely, recall that
during the setup phase, the server selection process of these
speed test applications tries to minimize the backbone delay
between the server and the AP with the ideal case being a

0

20

40

60

80

100

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 (M
bp

s)

beta.speedtest.net speedtest.att.com Xfinity Iperf

(a) Download speed test

0

20

40

60

80

100

U
pl

oa
d

Th
ro

ug
hp

ut
 (M

bp
s)

beta.speedtest.net speedtest.att.com Xfinity Iperf

(b) Upload speed test
Fig. 5: Iperf results as compared to exemplary online speed test applications.

server in the same LAN as the AP. In practice, a server within
the same LAN may not be available in the server pool probed
by these applications. Consequently, results obtained from a
non-local server may be affected by backbone load and delay.

To explore this effect, we keep one 802.11n laptop associ-
ated with the AP and run multiple speed test applications 10
times with a gap of 10 mins between each run. We attempt to
realize static WLAN conditions, i.e., with minimal activity
on co-existing BSS, no device or environmental mobility,
etc., in which the outcome of speed test applications should
remain stable. We compare these results with those obtained
by running iperf from a local server to remove backbone
and server selection effects. Fig. 5 shows the values obtained
for upload and download throughput from exemplary online
speed test applications as well as iperf. Compared to iperf,
the speed test applications demonstrate throughput reductions
and fluctuations due to backbone and server selection effects.
On the other hand, the values obtained from iperf remain
stable. Therefore, to obtain stable and more reliable ground
truth values in our experiments, we use the iperf tool.

VI. EXPERIMENTAL EVALUATION

In this section, we investigate the performance of virtual
speed test in the two deployment scenarios. In our experiments,
virtual speed test throughput estimates are obtained solely
via AP measurements, i.e., by using AP-snooped TCP data -
ACK handshakes from existing network traffic to estimate the
parameters required by the L2 edge TCP model. Immediately
following each throughput estimation, the ground truth is
measured via iperf on instrumented clients. While network
traffic is composed of both download and upload traffic, virtual
speed test only leverages download flows for uaccess estimation.

A. Uplink access time uaccess estimation

Throughput and virtual service time are impacted by the
uplink access time. Recall that this model parameter is not
directly observable at the AP. Rather, the VST AP leverages
snooped handshakes from TCP flows existing in the network
to estimate uplink access time. In our deployment, the VST
AP observes cases involving only single application traffic
as well as those with mixed application traffic involving
concurrent TCP flows with a mix of downloads and uploads.
To correctly estimate the uplink access time, the VST AP
needs to first identify TCP flows based on the address and size
signatures and then accurately identify the occurrence of the
ACK queuing and ACK immediate regimes. We first explore
the efficacy of the uaccess estimation method by comparing the

0 0.2 0.4 0.6 0.8 1
Ground truth value of uaccess

0

0.2

0.4

0.6

0.8

1
M

ea
su

re
d

va
lu

e
of

 u
ac

ce
ss

y=x

(a) Office Scenario

0 0.2 0.4 0.6 0.8 1
Ground truth value of uaccess

0

0.2

0.4

0.6

0.8

1

M
ea

su
re

d
va

lu
e

of
 u

ac
ce

ss

y=x

(b) Residential Scenario
Fig. 6: Scatter plot of uaccess measured and ground truth value in the office
and residential deployments. In each sub-figure, both the axis are normalized
with respect to the maximum ground truth value in that particular deployment.

estimates made by the VST AP using snooped flows with the
ground truth values obtained from the STA-side.

Fig. 6 shows a scatter plot of measured values of uaccess vs.
the ground truth value. For each deployment scenario, both
of these values are normalized with respect to the maximum
ground truth value in that particular scenario. Fig. 6 shows
that as the ground truth values of uaccess varies due to numerous
factors such as background traffic characteristics, active STA
count, etc., the points in the scatter plot continue to be closely
located to the identity line. Fig. 6 also demonstrates the
existence of homoscedasticity between estimates obtained by
VST AP and the ground truth value of uaccess obtained from
the STA-side. In essence, this shows that as the ground truth
value of uaccess varies due to the numerous factors mentioned
previously, the estimated value of uaccess retains its accuracy.

B. Throughput estimation accuracy

The ultimate goal of virtual speed test is to estimate θdl and
θul. To evaluate throughput estimation accuracy, we calculate
the percent estimation error between the ground truth values
obtained from iperf and the estimates of virtual speed test
as %error =

|(θgt−θest)|∗100
θgt

where θgt denotes the ground
truth value of throughput and θest denotes the estimated value
from virtual speed test. We remark that since the %error is
calculated after weighing by θgt, it is sensitive to the value of
θgt, i.e., the same absolute error at a smaller ground truth value
is bound to yield higher estimation error.

Fig. 7 summarizes the percent throughput estimation er-
ror statistics in both the office and residential deployments.
Overall virtual speed test shows a good match against ground
truth values with a mean percentage error of 4.09% and 4.3%
for upload and download speeds respectively in the office
scenario. In the residential scenario, these values are 5.51%
and 2.9% respectively.

Virtual speed test estimates the target STA’s throughput by
collecting measurements from its TCP traffic. Therefore, a key
factor that determines the estimation accuracy of virtual speed
test is the number of measurements that the VST AP can obtain
from the target STA’s TCP traffic which in turn depends on the
target STA’s online activity. On one extreme, a large number of
observations obtained from either a single large file download
or a series of consecutive small file download results in refined
parameter estimation. We experimentally investigate the obser-
vation set size required to avoid a deterioration in estimation

Download Upload
0

20

40

60

%
 E

st
im

at
io

n
Er

ro
r Download Upload

GT
(Mbps)

Est
(Mbps)

GT
(Mbps)

Est
(Mbps)

 85.7 86.57 63.7 63.06

 14.3 15.92 36.9 40.92

Best
case
Worst
case

(a) Office Scenario

Download Upload
0

20

40

60

%
 E

st
im

at
io

n
Er

ro
r

Worst
case

Best
case

Download Upload
GT

(Mbps)
Est

(Mbps)
GT

(Mbps)
Est

(Mbps)
 82.0 81.18 58.6 57.98

 47.5 52.15 4.44 5.29

(b) Residential Scenario
Fig. 7: Percent throughput estimation error statistics in the office and
residential deployments. In the table, GT denotes the ground truth value and
Est denotes the throughput estimated by virtual speed test.

500 1000 1500 2000 2500 3000
Observation set size

0

20

40

60

80

100

%
 E

st
im

at
io

n
er

ro
r

(a) Office: Download

500 1000 1500 2000 2500 3000
Observation set size

0

50

100

%
 E

st
im

at
io

n
er

ro
r

(b) Office: Upload

500 1000 1500 2000 2500 3000
Observation set size

0

50

100

%
 E

st
im

at
io

n
er

ro
r

(c) Residential: Download

500 1000 1500 2000 2500 3000
Observation set size

0

50

100

%
 E

st
im

at
io

n
er

ro
r

(d) Residential: Upload
Fig. 8: Throughput estimation error as a function of the observation set size
available at the AP

accuracy as follows. Since the backbone delay between the
snooped flow’s server and the VST AP is inconsequential, we
initiate a single TCP flow from a local server to the target STA
and treat it as a snooped flow. We control the observation set
size available at the VST AP by changing the download file
size and computing the percent throughput estimation error as
before.

Fig. 8 depicts the mean estimation error as a function of
the size of the observation set available at the VST AP. The
mean estimation error demonstrates an exponential decrease
with an increasing set size. When the sample set size is on
the order of a few 10s of samples, the estimation error is as
high as 70%. The variance in this case is also very high. This
is due to the fact that the number of measurement samples are
insufficient to accurately characterize the model parameters.
With an increasing sample set size, the precision in the model
estimation increases as expected. Fig. 8 reveals that even when
the observation set contains a few 1000s of samples (which
could easily be obtained from observing the download of a
research paper from IEEE Xplore), the mean estimation error
of virtual speed test is under 5% in both the deployments.4

VII. RELATED WORK

Analytical Models. Prior analytical models can predict
throughput while incorporating various MAC and PHY layer
aspects of Wi-Fi [17], [18]. Unfortunately, the models are

4ns 3 simulation details and results are in our companion tech report [16].

not applicable or extensible to our scenario as they require
AP-side knowledge of network topology, interfering nodes
including those from neighboring BSS, their traffic patterns,
PHY capabilities, data rates, etc. Obtaining this information
requires STA-side co-operation and regular reporting. On the
other hand, virtual speed test enables throughput estimation
with zero STA-side co-operation and no reporting.

Active measurements. Active probing techniques such
as [19], [20] involve usage of probing packets to estimate
bandwidth. However, they impose additional traffic load on
the network that can disrupt user traffic or drain the battery of
mobile devices. Tools such as [21] require client-side software
to perform network analysis. On the other hand, virtual speed
test performs passive measurement based estimation and hence
does not impose any additional traffic load on the network or
require any specialized client-side software.

Passive measurements. Careful deployment of sniffers can
be used to make passive observations to collect traffic traces
of various users to estimate throughput [22],[23]. Likewise,
collection of information from co-existing BSS can also enable
the AP to estimate throughput of its associated STAs [24].
However, such methods either require installation and mainte-
nance of additional hardware or co-operation from neighboring
BSS for data collection. In contrast, virtual speed test requires
no additional infrastructure or any cooperation from among
co-existing APs.

Training via ground truth measurements. In this ap-
proach, followed by [9], [25], [26], network clients store
empirical throughput of all TCP sessions and report them
to the AP to build a database of TCP throughputs. This
coupled with AP-side records of wireless conditions during
the TCP session (e.g., the session’s MCS, busy air time,
and collision rate) enable the AP to predict throughput by
correlating the current conditions with historical averages
corresponding to similar conditions. However, this requires
client-side reporting to obtain ground truth as network and
traffic conditions change, a requirement that is not allowed in
our problem formulation.

TCP flow analysis. TCP flow analysis has been leveraged to
understand IP and TCP statistics such as segment reordering,
duplication, etc. [27], identification of malicious attacks [28]
and for P2P Botnet detection [29]. In contrast, we utilize TCP
flow dynamics to measure L2 parameters to facilitate upload
and download throughput estimation for WLANs.

VIII. CONCLUSIONS

We presented virtual speed test - a measurement based
framework that enables an AP to continuously estimate TCP
speed test results for any of its associated STAs without
any end-user co-operation, with no additional traffic load on
the network and solely based on passively obtained AP-side
observables. We deploy a VST enabled AP in a university
office and in a residential apartment characterized by a variety
of operating conditions including the presence of multiple co-
existing BSSs, link diversity in terms of signal propagation
and supported PHY rates and variation in traffic characteristics

and the number of associated clients. Overall, virtual speed test
exhibits high accuracy with mean estimation errors below 6%.

IX. ACKNOWLEDGEMENTS
This research was supported by Cisco and by NSF grants

CNS-1801857 and CNS-1642929.

REFERENCES

[1] Ookla Speedtest. http://www.speedtest.net/. Accessed: 2018-05-27.
[2] AT & T Internet Speed Test. http://speedtest.att.com/speedtest/. Ac-

cessed: 2018-05-27.
[3] Xfinity Speed Test. http://speedtest.xfinity.com/. Accessed: 2018-05-27.
[4] D. Murray, T. Koziniec, S. Zander, M. Dixon, and P. Koutsakis. An

analysis of changing enterprise network traffic characteristics. In Proc.
of IEEE APCC, 2017.

[5] Ookla SpeedTest. How does the Begin Test button select a server?,
2012.

[6] Ookla SpeedTest. How does the test itself work? How is the result
calculated?, 2012.

[7] O. Goga and R. Teixeira. Speed measurements of residential internet
access. In Proc. of PAM, 2012.

[8] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic. Parallel TCP
Sockets: Simple Model, Throughput and Validation. In Proc. of IEEE
INFOCOM, 2006.

[9] A. Patro, S. Govindan, and S. Banerjee. Observing Home Wireless
Experience Through WiFi APs. In Proc. of ACM MobiCom, 2013.

[10] M. Harchol-Balter. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[11] D. Murray and T. Koziniec. The state of enterprise network traffic in
2012. In Proc. of APCC, 2012.

[12] R. Braden. RFC-1122: Requirements for internet hosts. Request for
Comments, pages 356–363, 1989.

[13] IEEE Std. 802.11ac-2013. Enhancements for Very High Throughput for
Operation in Bands Below 6 GHz, 2013.

[14] IEEE Std. 802.11n-2009. Enhancements for Higher Throughput, 2009.
[15] P. Jon. Transmission control protocol–darpa internet program protocol

specification. Technical report, RFC-793, DARPA, 1981.
[16] Companion technical report, available at. https://www.dropbox.com/s/

ruf3qh60bxdwhls/tech report.pdf?dl=0.
[17] P. Nayak, M. Garetto, and E. W. Knightly. Multi-user Downlink with

Single-User Uplink can Starve TCP. In Proc. of IEEE INFOCOM, 2017.
[18] D. Miorandi, A. Kherani, and E. Altman. A queueing model for HTTP

traffic over IEEE 802.11 WLANs. Computer Networks, 2006.
[19] K. Lakshminarayanan, V. N Padmanabhan, and J. Padhye. Bandwidth

estimation in broadband access networks. In Proc. of ACM SIGCOMM,
2004.

[20] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi. Capprobe:
A simple and accurate capacity estimation technique. In Proc. of ACM
SIGCOMM, 2004.

[21] K. Kim, H. Nam, and H. Schulzrinne. WiSlow: A Wi-Fi network
performance troubleshooting tool for end users. In Proc. of INFOCOM,
2014.

[22] L. DiCioccio, R. Teixeira, and C. Rosenberg. Impact of Home Networks
on End-to-end Performance: Controlled Experiments. In Proc. of ACM
HomeNets, 2010.

[23] Y. Cheng, J. Bellardo, P. Benkö, A. Snoeren, G. Voelker, and S. Savage.
Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis. In Proc. of
ACM SIGCOMM, 2006.

[24] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki. Pie in
the sky: Online passive interference estimation for enterprise wlans. In
Proc. of NSDI, 2011.

[25] C. Rattaro and P. Belzarena. Throughput prediction in wireless networks
using statistical learning. In Proc. of LAWDN, 2010.

[26] M. Mirza, K. Springborn, S. Banerjee, P. Barford, M. Blodgett, and
X. Zhu. On the accuracy of TCP throughput prediction for opportunistic
wireless networks. In Proc. of IEEE SECON, 2009.

[27] M. Mellia, A. Carpani, and R. Cigno. Tstat: TCP statistic and analysis
tool. In Proc. of Springer QoS-IP, 2003.

[28] Y. Chen and K. Hwang. TCP flow analysis for defense against shrew
DDoS attacks. In Proc. of IEEE ICC, 2007.

[29] L. Zhou, Z. Li, and B. Liu. P2P traffic identification by TCP flow
analysis. In Proc. of IWNAS, 2006.

