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Abstract—It has recently been shown that distributed queue-
based adaptation of CSMA’s contention aggressiveness can prov-
ably optimize network utility. However, such an approach is
fragile, and was shown to suffer high performance degradation
under conditions of frequent occurrence, namely; asymmetric
channels, heterogeneous traffic, and packet collisions. In this
work, we address the main sources of performance degradation
in optimal CSMA to design a distributed system for proportional-
fair throughput that delivers high performance in a wide-range
of network conditions. First, we propose a generalized version
of prior optimal CSMA models to incorporate individual per-
link modulation and coding rates. With such a model, we derive
adaptive principles that maximize utility under arbitrary channel
capacities. Second, we propose a novel structure that can be used
in the place of queues to provide optimal CSMA adaptation.
As such a structure does not use traffic backlog to operate,
the resulting adaptation is optimal for the set of backlogged
flows under general traffic arrival patterns. Third, we propose
a robustness function that reduces access in high contention
scenarios to avoid high performance degradation due to collisions.
By evaluating these three solutions against prior designs, we
observe vast performance gains, of up to 68% higher logarithmic
utility by our approach, on average over randomly-generated
scenarios that incorporate the three main sources of performance
degradation.

I. INTRODUCTION

Recently, an analytical framework has been proposed to
derive distributed CSMA algorithms for network utility max-
imization [5]. The main idea in such designs is to adapt the
back-off distribution at each transmitter based on the length of
queues at the MAC layer in a way that was rigorously shown
to approach the optimal network-wide throughput distribution.
Based on this method, an umbrella of distributed protocols
have been derived, showing high performance gains in scenar-
ios considered by the model [5]–[10].

However, later experimental work has shown that the same
approach is fragile, and can suffer from high performance
degradation as the model assumptions break [13]. In partic-
ular, are three the main sources of performance degradation
in optimal CSMA networks: channels asymmetries, packet
collisions at flow receivers, and dynamic traffic patterns such as
congestion-controlled flows. While other real-world conditions
have been identified that differ from those assumed by the
models (see [12] for a longer list), their impact has been
found to be minor in comparison with these three performance
degradation sources.

In this work, we derive a novel CSMA system for propor-
tional fairness using a mixed approach that jointly considers
optimization and robustness. On the one hand, we derive

techniques to relax the assumptions on channel symmetry
and traffic arrival patterns from design models, so that the
optimization becomes inherently robust to such conditions.
On the other hand, we introduce a robustness function that
limits performance degradation due to collisions by reducing
network access when contention levels are high. By accounting
for the three underlying sources of performance degradation
in optimal CSMA, the derived system outperforms current
approaches in a wide range of network operating conditions.
Our contributions are as follows.

First, we propose a generalized version of the throughput
model in [5] to the case of networks with arbitrary link
capacities; i.e. to incorporate adaptive modulation and coding
rates. While our model is based on a simple extension, it is
powerful enough to extend CSMA optimality analysis from
the specific case with fixed unitary capacity to the case
with general capacity assignments, and to derive adaptation
principles robust to such conditions. Furthermore, with this
model we show how to derive a distributed CSMA protocol
that maximizes proportional-fair throughput in networks with
channel asymmetries without explicit knowledge of channel
error probabilities.

Second, we observe that prior queue-based CSMA guaran-
tees optimal adaptation only when the arrival of packets at each
queue follows a specific process derived from the target utility
function. For other arrival patterns, the performance of the
system remains unspecified, which leads to severe performance
degradation under common traffic such as bursty flows and
TCP traffic. To solve this, we propose a novel structure, termed
the service meter, which emulates the operation of a queue,
thus inheriting the basic properties that allow optimization,
but uses a fictitious flow of abstract transmission units, so that
its evolution over time is not affected by (real) traffic arrivals.
With such a structure, adaptation can be shown optimal for the
set of backlogged flows, with no assumptions on their traffic
arrival patterns.

Third, the prior adaptation principle of optimal CSMA
models assumes no packet collisions, and can yield severe
performance degradation when the network contention levels
are high. We show that the goal of optimizing performance
alone conflicts with the goal of robustness, such that optimal
access can only be attained by arbitrarily increasing the con-
tention rate at all flows, while collisions can only be reduced
by decreasing it. Based on this observation, we propose a
combined system that balances optimality and robustness by
targeting near-optimal access in scenarios with low contention,
but reducing channel access to avoid interference as the
number of contending flows increases.



Finally, we evaluate the performance of our design against
other solutions under the three sources of performance degra-
dation above. Our results show that in scenarios with channel
asymmetries our generalized throughput model increases opti-
mization accuracy up to 4 times. In scenarios with heteroge-
neous traffic, the use of service meters delivers vast fairness
gains, restoring the throughput of (otherwise) starving flows. In
scenarios with high contention, our approach increases the net-
work throughput with respect to optimal CSMA of about 78%
by limiting collisions at flow receivers. Furthermore, the joint
operation of these three solutions delivers high performance
across a wide-range of network operating conditions, with up
to 68% average increase in logarithmic utility in randomly-
generated networks with 48 flows.

This document is organized as follows. Section II intro-
duces the optimal CSMA theory, the analytical framework
supporting distributed CSMA optimization. Section III derives
a distributed protocol for proportional fairness robust to chan-
nel asymmetries, heterogeneous traffic and high contention.
Sections IV and V respectively evaluate the performance of
the derived protocol in isolated scenarios aimed to validate
specific system aspects, and in general networks to study the
performance of the system as a whole. Section VI discusses
related work, and finally, Section VII concludes.

II. THE OPTIMAL CSMA FRAMEWORK

A. Network model

Optimal CSMA is an analytical framework proposed in
[5] for the optimization of multi-hop wireless networks. Such
a framework has been applied in a large number of works
for the design of distributed CSMA algorithms maximizing
different measures of network performance [5]–[10].

Such works model a wireless network using a graph
G = (V , E) where V is the set of nodes and E ⊆ V2 is the
set of links. Denote as F ⊆ E the set of traffic flows, of size
F = |F|. It is assumed that a distinct packet queue Qf is
maintained for each flow f = (i, j) at the MAC layer of node i
(the transmitter, or source node). The purpose of such a queue
is to temporarily store packets until a transmission opportunity
is granted to f .

Depending on the work, interference among links is cap-
tured using a conflict graph (e.g., [5]), or an interference matrix
(e.g., [8]). In either case, define an Independent Set (IS) in G as
a subset of flows that do not interfere with each other, and thus
can successfully transmit simultaneously. An IS is represented
by a tuple m ∈ {0, 1}F , where mf = 1 if f belongs to the
independent set. Denote as N the set of all ISs in G.

Assuming unitary modulation rates at all links, and no
channel errors, the capacity area of the network is defined as

Γ = {γ ∈ [0, 1]F : ∃π ∈ [0, 1]|N |,

∀f ∈ F , γf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1}

i.e., the set of all throughput distributions in the network that
are feasible by activating non-interfering links. Note that the
area Γ so defined is a convex region, as the convex combination
of ISs.

B. Queue-based CSMA optimization

The optimal CSMA framework captures complex inter-
actions among nodes in a multi-hop network using the
continuous-time CSMA model from [1]. In such a model,
the transmitter of a flow f waits for a silent back-off time
exponentially distributed with mean 1/λf before transmitting,
and uses a transmission duration exponentially distributed
with mean µf . In the following, we denote such a model as
CSMA(λ,µ).

The dynamics of a CSMA protocol operating in the
network G can then be captured with a reversible Contin-
uous Time Markov Chain (CTMC) M, where the set of
states is given by N , and the transmission probabilities de-

pend on the CSMA parameters (λ,µ) ∈ R>0
2×F . Defining

qf = log(λf × µf ) ∀f ∈ F , the stationary distribution of M
is given by

πqm =
exp (

∑

f∈F qf ×mf )
∑

n∈N exp (
∑

f∈F qf × nf )
∀m ∈ N (1)

Thus, assuming fixed unitary link capacities, and that
simultaneous transmissions over interfering links are always
avoided by Carrier Sensing (CS) [2], the flow throughput
distribution can be determined as

γqf =
∑

m∈N

πqm ×mf ∀f ∈ F

The work in [5] shows that, for any γ in the interior of Γ,
there exists (λ,µ) ∈ R>0

2×F such that

γf ≤ γqf ∀f ∈ F

Furthermore, it shows that, if the input rate at all MAC-
layer queues is within the CSMA capacity region, all such
queues are stabilized by adapting the value of q over time as
a scaled version of the queue lengths.

More precisely, time is divided into small intervals in-
dexed by t ∈ N. Denote as Qf [t] the queue length of flow
f at the beginning of interval t. Also, denote as λf [t], and
µf [t] respectively the medium access rate, and the trans-
mission duration used by flow f during interval t. Defining
qf [t] = b×Qf [t] ∀f ∈ F (with b a small positive real value),
all MAC-layer queues are stabilized by adapting the CSMA
parameters so that

λf [t]× µf [t] = exp(qf [t]) ∀f ∈ F (2)

for each interval t. In other words, by periodically adapting the
CSMA parameters using rule (2), any throughput distribution
γ in the interior of Γ is supported.1

Finally, [5]–[8] use the adaptation rule (2) to navigate the
convex region Γ and derive subgradient methods to approx-
imately solve different optimization problems. For example,

1In the case of shared transmitters, local contention within a node is resolved
deterministically by serving the flow f with larger λf [t] at each interval t.



denoting as Sf [t] the throughput received by a flow f dur-
ing interval t, the proportional-fair throughput maximization
problem

max
γ∈Γ

{
∑

f∈F

log(γf )} (3)

can be solved by injecting V/qf [t] data into each flow queue
Qf during each interval t (where V is a positive real number),
so that the variation of queue length during interval t is given
by △Qf [t] = ((V/qf [t]) − Sf [t]). The idea is that △Qf [t]
captures a subgradient step of the logarithmic function over
the area Γ to approach the maximum point (3).

This last step does require some assumptions; (i) all queues
are assumed non-empty throughout the system execution for
the objective in (3) to be fixed over time; (ii) timescale
separation is needed for the network to converge to its steady-
state within one time interval, so that Sf [t] well-approximates

the value γ
q[t]
f ; and (iii) at least V/qf [t] data from upper layers

should be available to be injected into Qf during each interval
t.

While the assumption on non-empty queues has limited
impact (since flows without data to transmit do not need to
adapt in any case), and the assumption on timescale separation
can be relaxed using the ideas on [8], the assumption of
V/qf [t] arrivals is hard to relax in such a design in which
the medium access rate of flows is exclusively adapted as a
function of queue backlog. Nevertheless, when the assumptions
of the model hold, optimal CSMA guarantees near-optimal
performance, solving optimization problems such as (3) as an
approximation algorithm with arbitrarily bounded accuracy.

III. ROBUST CSMA WITH NETWORK OPTIMIZATION

A. Design overview

The powerful analytical framework of optimal CSMA
theory allows the derivation of distributed algorithms with
probable performance guarantees. However, as discussed in
Section II, a number of assumptions are required to prove
optimality. Furthermore, later experimental works have shown
that the impact of some of those assumptions can be high,
significantly degrading the protocol performance in real sce-
narios.

In this section, we design a distributed CSMA protocol
for proportional fairness, that addresses the main sources of
performance degradation in optimal CSMA to deliver high
performance across a wide range of networking scenarios.
In particular, we overcome the limitations to provide robust
operation in the presence of three challenging conditions;
channel asymmetries, heterogeneous traffic patterns and high
contention.

First, in Section III-B, we introduce a generalized version
of the model in [5], that accounts for traffic asymmetries to
capture the relation between flow throughput and transmission
time. With the use of such a model, we show how to relax
the assumption on fixed unitary link capacities from optimal
CSMA models by splitting the derivation into two steps: (i)
In Section III-C we derive a CSMA protocol that maximizes

proportional-fair transmission time without any assumptions
on the symmetry of channels; (ii) Using a problem-reduction
technique, we show in Section III-D that the same protocol also
maximizes proportional-fair throughput in the same scenarios.
Furthermore, the protocol operates in a completely distributed
way, and does not require explicit knowledge of channel error
rates.

Second, we address performance degradation due to het-
erogeneous traffic jointly with the optimization of transmission
time in Section III-C. Solving this problem is hard in opti-
mal CSMA, since the analytical expressions of subgradient
steps used to maximize a given objective function only apply
to MAC-layer queues under specific traffic arrival rates. In
contrast, we show that the subgradient of network utility can
also be captured by the use of a novel structure, termed the
service meter, whose evolution over time is only affected by
the service received by a flow. Thus, any backlogged flow can
receive optimal adaptation with such a structure regardless of
the traffic arrival rates from upper layers.

Third, a simplifying assumption in optimal CSMA models
is that CS always prevents any simultaneous transmissions at
interfering links. While the impact of such an assumption may
be limited in small networks, in Section III-E we show that
it leads to high performance degradation with a large number
of contending flows. Furthermore, we show that the goal itself
of optimizing performance as captured by such a model is
conflicting with the goal of robustness to interference, such that
nominal performance can only be maximized by incurring in
high collisions, and vice versa, robustness to high contention
can only be attained by reducing medium access. Thus, we
propose a mixed design, that adapts over time to deliver near-
optimal performance when the network contention levels are
low, yet reduces access to avoid interference in scenarios with
high contention.

B. A generalized throughput model

Here, we introduce a generalized version of the throughput
model in Section II-A that explicitly captures the relation
between throughput and transmission time for each traffic flow
over links with arbitrary channel capacities. Albeit based on
a simple extension, the model extends optimization analysis
from fixed unitary capacities to the general case with (po-
tentially) asymmetric channels, and will be used in the next
sections to derive a distributed optimal CSMA protocol robust
to such conditions.

To this end, we model a wireless network using a labeled
graph G = (V , E , c) where V is the set of nodes, E ⊆ V2 is

the set of links, and the labels in c ∈ R
|E|
>0 are the capacities

of each link in E . As before, denote as F ⊆ E the set of traffic
flows, with F = |F|, and as N the set of ISs in G.

Such a formulation is flexible enough to accommodate
different notions of channel capacity. In general, we assume
cf to be the average transmission rate attained by a flow f
in isolation under maximum channel utilization. For example,
denoting as rf the modulation rate used by the transmitter
of flow f , and as ef the error probability over the channel
used by flow f , the channel capacity of f ’s link is given by
cf = rf × (1− ef ).



Under this network model, the set of all feasible trans-
mission-time distributions among flows in F (constrained over
non-interfering links) is given by

Ψ = {ψ ∈ [0, 1]F : ∃π ∈ [0, 1]|N |,

∀f ∈ F , ψf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1}

which is convex, as the convex combination of ISs in N .

Given a transmission-time distribution ψ ∈ Ψ, the through-
put of a flow f under the channel capacities c is given
by γf (ψ, c) = ψf × cf . Furthermore, the capacity area of
G = (V , E , c) is defined as

Γ(c) = {γ ∈ R
F
≥0 : ∃ψ ∈ Ψ,γ = γ(ψ, c)}

which again, is convex as a scaled version of the convex set Ψ.
The model in Section II-A can be interpreted as a special case
of the model here presented, when cf = 1, ∀f ∈ F . However,
it is direct to see that the throughput of a flow f as captured
by the two models can significantly differ depending on the
value of cf .

Finally, we redefine the goal of maximizing a proportional-
fair throughput distribution in G as

max
ψ∈Ψ

{
∑

f∈F

log(γf (ψ, c))} (4)

i.e., adapting the transmission-time distribution to the one that
maximizes the network-wide logarithmic utility of throughput.
In the following sections, we derive a distributed CSMA algo-
rithm that approximately solves (4) with no explicit knowledge
of the values in c.

C. Transmission-time optimization under heterogeneous traffic

1) Transmission-time CSMA optimality: Consider the net-
work model in Section III-B. In this section, we derive a
distributed CSMA algorithm that solves

max
ψ∈Ψ

{
∑

f∈F

log(ψf )} (5)

robust to channel asymmetries and heterogeneous traffic arrival
patterns. Later, in Section III-D, we will show that the same
algorithm also solves (4), with arbitrarily bounded accuracy.

In the definition of (5), as well as in the following analysis,
we assume that all flows in F always have a packet to trans-
mit. This simplifies analysis by considering a fixed objective
over time well-defined over the set F , so that an algorithm
converging to the optimal point ψ∗ can be derived. While
in practice queues can become empty, this does not limit the
applicability of our method, as we can assume the set F to
dynamically adapt in time to include only the set of backlogged
flows (which automatically changes the goal defined by (5) as
F changes). Furthermore, as long as queues are non-empty,
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Fig. 1: A combined packet-queue Qf and service meter Kf ,
for a given traffic flow f . Solid arrows represent the flow of
packets/units, whereas dotted arrows represent the interaction
among different system components. In the case of shared
transmitters, a different pair (Qi,Ki) is maintained at the node
for each local flow i. The node transmitter notifies the service
meter Kf upon completion of an f ′s transmission, to subtract
the amount of service received.

we make no assumption on the packet arrival process from
upper layers which is the fundamental aspect to attain robust
CSMA adaptation.

We model the operation of a CSMA protocol over the
network G with the above described continuous-time CSMA
model CSMA(λ,µ). Then, the steady-state distribution of
transmission time in the network G is given by

ψkf =
∑

m∈N

πkm ×mf ∀f ∈ F (6)

where k is defined as kf = log(λf × µf ) ∀f ∈ F and the
value of πkm is given by (1). Also, for any transmission-time
distribution ψ in the interior of Ψ, there exists k ∈ R

F such
that

ψf ≤ ψkf ∀f ∈ F

i.e., as in the case of throughput with fixed unitary link
capacities, any transmission-time distribution ψ in the interior
of Ψ can be attained by selecting an appropriate choice of
CSMA parameters (λ,µ) ∈ R>0

2×F . Furthermore, due to the
convexity of Ψ, it is possible to derive subgradient methods to
solve optimization problems such as (5) by adapting the value
of k to navigate the region Ψ.

2) A novel structure for subgradient methods: The chal-
lenge to solve (5) is to derive an expression of the logarithm’s
subgradient that can be translated into distributed operations
to adapt the CSMA parameters at all network nodes. To this
end, the solutions described in Section II use the length of
MAC-layer queues as a measure of the service received by
each flow, in order to adapt its parameters accordingly.

Unfortunately, the use of queues to regulate CSMA ac-
cess does not apply well to the problem of optimizing flow
transmission time with heterogeneous traffic considered here.
First, packets may not be removed from a queue in case
of unsuccessful transmission. Thus, queue length variations



naturally reflect the amount of throughput received by a flow,
but are not suitable to measure transmission time. Second, it
requires the assumption that, at any time interval, the packet
arrival rates from upper layers are high-enough to maintain the
required queue length for optimal adaptation.

Our key contribution is the design of a novel structure that
captures the subgradient of the utility function in order to solve
(5), without the use of traffic backlog. Instead, it acts like a
counter that records the amount of service received by a flow f ,
using abstract service units. We refer to such a device, depicted
in Fig. 1, as the service meter, denoted asKf . Since the service
meter does not use any packets to provide adaptation, it can
be defined to measure service in terms of transmission time,
and its operation is not dependent on the packet arrival rate
from upper layers.

More precisely, each node periodically updates its state
over small time intervals indexed by t ∈ N. Denote as Kf [t]
the value of Kf at the beginning of interval t. To provide
for CSMA adaptation, denote as λf [t] the medium access rate
used by f ’s transmitter during interval t. Also, denote as Tf [t]
the fraction of transmission-time by a flow f during interval t.
During each interval t, a number of service units are added to
the service meter Kf . Upon a data packet transmission from
flow f , the corresponding transmission time is subtracted from
Kf (even in the case of unsuccessful transmission), such that
the “service” received by the service meter during interval t is
equal to Tf [t].

Then, the set of service meters can be stabilized by defin-
ing kf [t] = b×Kf [t] ∀f ∈ F (with a small positive value
b ∈ R>0), and adapting each flow f ’s channel access rate at
the end of each interval t as

λf [t+ 1] =
exp(kf [t+ 1])

µf

(7)

In other words, any target transmission-time distribution
ψ ∈ Ψ can be attained using (7) while incrementing each Kf

at a rate ψf .
2

Furthermore, by limiting the values of kf [t] within a range
[kmin, kmax] ⊂ R>0, and adding V/kf [t] units to Kf during
each interval t (with V ∈ R>0), the evolution of kf [·] is
determined by

kf [t+ 1] =

[

kf [t] + b×
( V

kf [t]
− Tf [t]

)

]kmax

kmin

(8)

where [·]kmax

kmin
= min(max(·, kmin), kmax). Then,

△Kf [t] = ((V/kf [t])− Tf [t]) can be readily interpreted
as a subgradient step to approximately solve (5), when using
(8) together with (7) to provide for CSMA adaptation, as
shown in the following result.

2Here, we use the assumption that each flow f ∈ F always has at
least one packet to transmit. In a practical implementation, if a queue Qf

becomes empty (so that the flow f does not need to be served), remove the
corresponding service meter Kf from the system and remove f from F so that
the assumption still holds. Similarly, add a new service meter to the system
when a new traffic flow starts.

3) A distributed CSMA algorithm for proportional-fair
transmission-time maximization:

Proposition 1. Refer as Algorithm 1 to a protocol using rules
(7) and (8) at all nodes to update their CSMA parameters.
Then, Algorithm 1 approximately solves (5) with bounded
accuracy log(|N |)/V .

Proof: Consider the following optimization problem.

max
ψ,π

{V
∑

f∈F

log(ψf )−
∑

m∈N

πm log(πm)} (9)

s.t. ∀f ∈ F ψf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1

We proceed by showing that (8) can be interpreted as
a subgradient step of a dual problem of (9), projected onto
[kmin, kmax]. First, we derive the Karush-Kuhn-Tucker condi-
tions to solve (9) as

V/ψf = νf , ∀f ∈ F , (10)

−1− log πm +
∑

f∈F

(νf − η)×mf = 0, ∀m ∈ N , (11)

νf × (ψf −
∑

m∈N

πm ×mf ) = 0, ∀f ∈ F , (12)

η × (
∑

m∈N

πm − 1) = 0, (13)

νf ≥ 0, ∀f ∈ F (14)

where we omit the intermediate step of deriving the Lagrangian
L(ψ,π;ν, η) of (9) for brevity.

For each flow f , define a dual variable k̃f = νf . Using
ideas analogous to [5], [8], (11) and (13) can be satisfied

by choosing η = log(
∑

m∈N exp(
∑

f∈F k̃f ×mf ))− 1 and

π = πk̃ (which is equivalent to the adaptation rule (7), through
the equality (1)). Furthermore, the subgradient of (10) satisfy-
ing (12) is given by

ν̇f = (V/νf −
∑

m∈N

πk̃m ×mf ) (15)

Then, (15) is a subgradient step to solve the dual of
problem (9). Since (9) is strictly convex, the subgradient
method based on (15) is guaranteed to converge to the solution
ν∗ = (ν∗f , f ∈ F). Moreover, if ν∗ ∈ [kmin, kmax]

F , (15) is

equivalent to adaptation rule (8), through the use of (6).3 This
shows that Algorithm 1 solves (9).

It remains to show that Algorithm 1 solves (5) with
bounded accuracy log(|N |)/V . To see this, note that (5) is
equivalent to

3While this assumes that the network converges to a steady state within one
interval, such that the measure T [t] attains the value of ψk[t], the analysis
can be readily extended using the ideas in [8] to relax such an assumption.



max
ψ∈Ψ

{V
∑

f∈F

log(ψf )} (16)

The bound log(|N |)/V can be obtained by comparing (16)
to (9) and limiting the term

∑

m∈N πm log(πm) in (9) with
the known entropy bound log(|N |).

Remark 1. While Proposition 1 relies on the assumption that
all queues are non-empty throughout the system operation,
and that the set of flows F is fixed over time, in practice
the same results can be applied to dynamic scenarios by
observing that optimal adaptation in Proposition 1 is attained
from any starting point. Then, in the case of changes on the
set of backlogged flows, which would imply variations on the
optimal point defined by (5), the algorithm continues adapting
after each change in the search for the (new) optimal point.

Remark 2. The positive term V/kf [t] in (8) is not dependent
on flow packet arrivals from upper layers, and can be added
to Kf even if packet sources have been interrupted, to provide
continued adaptation at any backlogged flows up to the last
packet transmitted. In Section IV-C we show that this is a
fundamental aspect to attain high performance in scenarios
with heterogeneous traffic.

For ease of reference, we next provide a description of
Algorithm 1. There, we use Qf [t] to denote the length of f ’s
MAC-layer queue at the beginning of interval t.

Algorithm 1 Distributed CSMA adaptation

The following procedures are executed by the transmitter of
each flow f ∈ F .

During interval t:

1: Run CSMA(λ[t],µ) while recording the fraction of trans-
mission time Tf [t] received during interval t

At the end of interval t:

1: if Qf [t+ 1] > 0 then

2: Set kf [t+ 1] =

[

kf [t] + b×
(

V
kf [t]

− Tf [t]
)

]kmax

kmin

3: end if
4: Update λf [t+ 1] = exp(kf [t+ 1])

/

µf

If Qf becomes empty during interval t:

1: Reset kf [t] = kmin

2: Update λf [t] = exp(kf [t])
/

µf

D. Maximizing proportional-fair throughput over asymmetric
channels

In Section III-C we have shown that Algorithm 1 max-
imizes proportional-fair distributions of transmission time in
networks with (or without) channel asymmetries. In the fol-
lowing, we extend our analysis to show that the same protocol
also maximizes proportional-fair throughput, thus solving (4),
in the same scenarios.

We proceed by reducing the problem of maximizing
proportional-fair throughput (4) to the problem of maximizing
proportional-fair transmission time (5). To this end, refer to

the throughput model defined in Section III-B. Then, assum-
ing no packet collisions, which will be treated separately in
Section III-E, we have

argmax
ψ∈Ψ

{
∑

f∈F

log(γf (ψ, c))} =

argmax
ψ∈Ψ

{
∑

f∈F

log(ψf ) + log(cf ))} =

argmax
ψ∈Ψ

{
∑

f∈F

log(ψf )} (17)

Equation (17) shows that (5) and (4) are equivalent prob-
lems. In the next result, we use this property to show that
Algorithm 1 maximizes proportional-fair throughput in wire-
less networks without any assumptions on the symmetry of
channels.

Theorem 1. For any choice of channel capacities c ∈ R
|E|
>0,

Algorithm 1 solves (4) as an approximation algorithm with
bounded accuracy log(|N |)/V .

Proof: Without loss of generality, let a choice of channel

capacities c ∈ R>0
|E| be given. From Proposition 1, Algo-

rithm 1 solves (5) as an approximation algorithm. Hence, since
(5) is equivalent to (4) via (17), Algorithm 1 also solves (4).

It remains to show that the accuracy of Algorithm 1 in
solving (4) is bounded by log(|N |)/V . To this end, denote as
γ∗ the solution to (4). Similarly, denote as ψ∗ the solution
to (5). Also, denote as γ† and ψ† respectively the throughput
and transmission-time distributions attained by Algorithm 1 in
the same network after convergence. Then,

|
∑

f∈F

(log(γ∗f )− log(γ†f ))| =

|
∑

f∈F

(log(ψ∗
f × cf )− log(ψ†

f × cf ))| =

|
∑

f∈F

(log(ψ∗
f )− log(ψ†

f ))| ≤ log(|N |)/V

where the inequality at the last step is given by Proposition 1.

Remark 3. Equation (17) implies that the optimal point ψ∗

does not change for different values of c. Thus, once the
algorithm has converged to an optimal point, it does not need
to re-converge at every change in c, as the same operating
point maximizes the network performance across different
channel conditions. This property allows Algorithm 1 to na-
tively support modulation rate adaptation without any required
extensions, and variations in the channel conditions without
continuously tracking the error rate probability at each link.

E. Robust operation under high contention

1) Perfect sensing in CSMA(λ,µ): The analytical deriva-
tion in the previous sections is based on the continuous-time
CSMA(λ,µ) model, which captures the service received by
each flow with simple analytical expressions that integrate



well into an optimization framework. A required assumption
in the model is that of a “perfect” CS implementation that
always avoids any simultaneous transmissions at interfering
links. While in practice different conditions can make CS fail,
the CSMA(λ,µ) model is still widely adopted due to its
suitability for multi-hop wireless CSMA optimization [5]–[8].
Next, we discuss the performance of algorithms derived with
this model, in general scenarios with imperfect sensing.

In a real network, CS may fail to detect an ongoing trans-
mission over interfering links due to either of two situations
[4]; (i) propagation delays introduce a detection delay such that
two neighbor nodes may not detect each other’s transmissions
if they decide to transmit at nearly the same time, and (ii)
attenuated signals may not be strong enough to be detected if
two interfering transmitters are relatively far from each other,
a situation widely known as hidden terminals. In any of the
two cases, interference from other links at a flow’s receiver
can prevent the successful reception of a transmitted packet
(which is referred to as a collision).

Prior works use the assumption that the effects of hidden
terminals can be limited using RTS-CTS handshakes. In the
following analysis, we also rely on this assumption which
was validated by experimental work in [13] yielding good
results. For the case of collisions with neighbor transmitters,
instead, prior work suggests that the effects of imperfect
sensing are limited by keeping long back-off times [16]. The
idea is that, when capturing access based on the CSMA(λ,µ)
model, back-off times and transmission durations can be jointly
expanded while still guaranteeing an optimal adaptation at all
flows. For example, in the case of Algorithm 1, (7) shows
that choosing a long transmission duration µf , the access rate
assigned to each flow f is reduced.

2) The optimization-robustness conflict: While the condi-
tion of long transmissions is necessary in order to reduce
access aggressiveness by multiple flows and limit collisions,
in the following we show that such a condition is insufficient
to guarantee robust operation across multiple system config-
urations. Furthermore, we show that optimizing the system
performance as captured by CSMA(λ,µ), and guaranteeing
robust operation of CS are two conflicting goals, such that
nominally-optimal access can only be attained by incurring in
high collisions, and viceversa, collisions can only be limited
by reducing network access.

To see this, first note that our solution (as well other
protocols derived from the same optimization framework),
does not attain optimality in absolute terms, but only asymp-
totically as an approximation algorithm with bounded accuracy
E(V ) = log(|N |)/V . Moreover, E(V ) is a monotonically
decreasing function of V , and the limit limV →∞E(V ) = 0
implies that near-optimal performance is attained by the choice
of a large V .

Denote as ψV , kV , and λV , respectively the transmission-
time distribution, the service meter values, and the flow access
rates attained by Algorithm 1 at convergence under the param-
eter assignment V . Then, the condition limt→∞ △kf [t] ≈ 0
implies

((V/kVf )− ψV
f ) ≈ 0 ∀f ∈ F

where we approximate the transmission-time measure
limt→∞ Tf [t] with its expected value ψV

f . Furthermore,

λVf = exp(kVf )/µf ≈ exp(V/ψV
f )/µf ∀f ∈ F (18)

which yields limV →∞ λVf = ∞. i.e., while optimal perfor-
mance is attained asymptotically as V → ∞, the target access
rate at each flow diverges as Θ(exp(V )).

In addition, the value of λVf depends on the received service

ψV
f , which appears as a denominator in (18). Thus, for a fixed

value of V , a flow with a lower service attains a higher access
rate than other flows. While this is a required feature to provide
fairness in asymmetric scenarios where a flow’s perceived
service is low relative to other flows, in a highly congested
scenario with symmetric contention, the low service received
leads to high access rates at all involved flows, consequently
increasing the collision probability.
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Fig. 2: Performance attained under symmetric contention and
different choices of the parameter V .

Fig. 2 shows the collision probability and theoretical error
bound under different levels of contention in a symmetric
scenario, as a function of V . To obtain the collision proba-
bilities in Fig. 2a, we execute Algorithm 1 in our simulator
implementation (more details about the simulator itself are
given in Section IV-A). Such relations clearly show a trade-off
between nominal performance and robustness to interference,
such that reducing the optimization error can only be attained
by increasing the collision probability (and vice versa).

3) Balancing robustness with optimization accuracy:
While it is not possible to simultaneously attain optimal access
and minimize collisions, the relations in Fig. 2 determine,
for each level of contention, the maximum value of V such
that collisions fall below a given threshold. In this way, the
theoretical error in the network optimization is minimized
subject to a maximum allowed collision probability. Note
that, as CSMA adaptation in Algorithm 1 is only based on
transmission time, thus independent from transmission success
rates, the measures in Fig. 2a apply to any modulation rate and
channel conditions, as long as all flows use a fixed average
transmission time µ⋄ (in our implementation, described in
Section IV-A, we attain this by using a combination of packet
fragmentation and aggregation at the MAC layer).

Moreover, the curves in Fig. 2 show that the trade-off be-
tween nominal performance and robustness highly depends on
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Fig. 3: Alternation of contention estimation and parameter
update phases for automatic V adaptation.

the number of contending flows. Thus, the level of contention
is an essential metric for the robust configuration of optimal
CSMA. As the network topology can change over time, we
propose an adaptive system that periodically updates the value
of V based on an estimated measure of the network contention
level.

The key idea is to exploit the broadcast nature of wireless
transmissions to derive an estimation of the network contention
level. For example, in a scenario with symmetric contention,
each node can estimate the number of contending flows by
overhearing packet transmissions from neighbor flows. Then,
the relations in Fig. 2 can be used at each node to indepen-
dently select the configuration of V that yields the desired
balance between optimization accuracy and robustness (later
on in this section we explain how to ensure a symmetric choice
of V in the case of asymmetric scenarios).

More precisely, assume that time is divided into epochs of
equal length and indexed by n. During an epoch n, all network
flows distributedly estimate a measure Ωn of the network
contention level (measured in number of mutually-contending
flows). At the end of epoch n, each node uses Ωn to select a
value Vn+1 to be used as the configuration V during the next
epoch. Fig. 3 shows a diagram of the system operation.

An additional challenge is given by the fact that, for the
results in sections III-C and III-D to hold, the value of V
should be the same at all network flows. While in a symmetric
scenario all flows have the same number of neighbors, in
general networks different nodes may experience different
contention levels. In such cases, we use the maximum level of
contention in the network in order to select V . Denoting as ωi

n

the number of contending flows detected by node i by the start
of epoch n, we define the maximum network contention level
as Ωn = maxi∈V{ωi

n}.
4 The idea is to satisfy the robustness

requirement in the entire network by selecting a value of V that
yields low collisions at the point with maximum contention
(and thus also in other points).

Furthermore, the value of Ωn = maxi∈V{ωi
n} can be

determined distributedly in a multi-hop network using the
lightweight gossiping protocol in Algorithm 2. In our solution,
a different instance of such an algorithm is executed at each

epoch n. At the end of epoch n, the resulting value of Ω̂i
n is

used at node i to update its configuration of V . It is easy to
show by induction on the set of nodes, that for any connected

network, the estimation Ω̂i
n at each node i converges to the

4In such scenarios, we also infer contending flows based on overheard
CTS packets, so that ωi

n includes all contenders to a flow i, either hidden
or in transmission range. Our performance evaluation shows that the effects
of hidden terminals are significantly reduced by the use of RTS/CTS, and the
dominant factor in Optimal CSMA remains the number of contending flows.

value of maxj∈V{ωj
n} (we omit the proof for brevity).

Algorithm 2 Maximum contention level estimation

The following procedures are executed by each node i ∈ V
during an epoch n.

At the start of epoch n:

1: Set Ω̂i
n = ωi

n

Before a packet p is sent by i:

1: Set the field p.epoch = n
2: Set the field p.Ω̂ = Ω̂i

n

After packet p is received (overheard) by i:

1: if p.epoch = n and Ω̂i
n < p.Ω̂ then

2: Set Ω̂i
n = p.Ω̂

3: end if

At the end of epoch n:

1: Return Ω̂i
n as the estimated value of maxj∈V{ωj

n}.

IV. EVALUATION OF ISOLATED PERFORMANCE FACTORS

We validate our design by means of extensive simula-
tions. As discussed before, three are the main sources of
performance degradation in optimal CSMA networks, each
of them affecting the system operation in a different way;
channel asymmetries, heterogeneous traffic patterns and colli-
sions under high contention. To precisely evaluate the protocol
operation under each of these conditions, in this section we
present custom evaluation scenarios that isolate one source of
performance degradation at a time, and reveal the performance
gains delivered by our design in each case.

In addition, these three performance degradation sources
appear combined in real networks, affecting the protocol
performance at the same time. Thus, in Section V we extend
our evaluation to randomly-generated scenarios that study how
the combination of multiple protocol features delivers high
performance in general settings.

A. Simulation setup

For our evaluation, we use extensions to Glomosim for
optimal CSMA adaptation that have been validated experimen-
tally by prior works [11], [13]. In addition, we implemented
custom modules to support independent per-link modulation
rate assignment, and extended the BER-table channel model
to support multiple rates, as required for the evaluation of
scenarios with asymmetric channels in Sections IV-B and V.

To ensure a fixed mean transmission time µ⋄ as required
by our protocol, we use a combination of packet aggregation
and fragmentation at the MAC layer. In our simulations, we
set µ⋄ = 2.32 ms for all flows, which comprises the entire
duration of a transmission exchange from the RTS to the
last ACK. To implement the epoch-based adaptation of V
derived in Section III-E3, we maintain a loose synchronization
among nodes by means of data packet transmissions. The total
overhead required to implement the solution sums up to 2 bytes
per packet.

We evaluate our design alongside 802.11a and an optimal
CSMA protocol representative of the ones described in Section
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Fig. 4: Throughput distribution attained by different protocols
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II, which provide a baseline for comparison. All protocols
operate over the 802.11a PHY layer [3]. The implemented
optimal CSMA protocol follows the specifications and con-
figurations from previous work in [13], except for the cases
stated otherwise. In the following, we refer as oCSMA and
RO-CSMA respectively to the implementation of the optimal
CSMA protocol, and to that of our solutions from Section III.
We use measures of proportional fairness, such as logarithmic
network utility and throughput product, as the main perfor-
mance measure for evaluation, and other measures depending
on the scenario to better highlight the differences among the
three evaluated solutions.

B. Channel asymmetries

In Section III-D, we have shown that our solution max-
imizes proportional-fair throughput with no assumptions on
the symmetry of channels. In this section, we validate such
a feature against other protocols in scenarios with multiple
contending flows over links with asymmetric modulation rates.

The simulated network comprises 4 flows in contention
range, over links at 6 Mbps, 12 Mbps, 24 Mbps, and 54
Mbps. Fig. 4 shows the obtained results in terms of per-
flow throughput for our solution compared to 802.11, optimal
CSMA and the optimal throughput distribution determined
from the effective channel capacities of 5.5 Mbps, 9.5 Mbps,
17 Mbps, and 32 Mbps measured separately at each link in
isolation.

The results show a throughput distribution much closer to
the optimal by our approach, with an average error of 5.4%
against a 53.2% by 802.11 and 22.4% by optimal CSMA. In
addition, our design delivers twice the throughput product of
optimal CSMA and four times more than 802.11, while at the
same time increasing the total throughput (15.6 Mbps against
8.9 Mbps by 802.11 and 11.4 Mbps by optimal CSMA).

Finally, we verify that such performance gains are due to
the transmission-time based optimization, described in Sec-
tion III-C. Due to the symmetry of the evaluated scenario,
the transmission-time distribution that maximizes throughput
assigns equal (maximum) transmission time to all flows. How-
ever, in optimal CSMA the flow over the poorest link receives
up to 54% more data transmission time than others, while in
802.11 such difference can raise up to 455%. Instead, with our
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Fig. 5: Results obtained by different protocols in a scenario
with competing heterogeneous traffic flows.

transmission-time based adaptation, the available channel time
is evenly distributed, with a maximum difference among all
flow pairs of 13%.

C. Traffic heterogeneity

We evaluate next the impact of traffic heterogeneity in sys-
tem performance. The purpose is to validate the mechanisms
derived in Section III-C, designed to deliver optimal adaptation
with no assumptions on traffic arrival processes at MAC-layer
queues, in situations with multiple competing flows of different
traffic types.

To this end, we simulate a network with one Access Point
(AP) and 9 clients. We generate concurrent downlink flows
from the AP to each client, comprising; (i) 3 Constant Bitrate
(CBR) flows, which generate an arrival process at MAC-layer
queues similar to the one assumed by the optimization models
in Section II; (ii) 3 bursty traffic flows following a Pareto ON-
OFF model, which interleave idle periods at the source with
periods of high packet arrivals to the MAC layer, and; (iii)
3 long-lived TCP flows, which limit the number of in-flow
packets using a window-based congestion control mechanism.
The bitrate of CBR flows and Pareto ON-OFF flows during
ON periods is 1.5 Mbps. The Pareto distribution parameters
are {αOFF = 1.5, αON = 1.1, bOFF = 4.17, bON = 1.82}.

We evaluate this scenario with multiple downlink flows
from the same AP, both because it is a common scenario
occurring in practice, and also to abstract from the problems
of high channel contention with multiple transmitters,5 which
will be studied separately in Section IV-D. Also, with shared
transmitters optimal CSMA resolves contention by a determin-
istic decision that always serves the local flow with higher
contention aggressiveness (and so does RO-CSMA), which
allows us to evaluate these adaptive mechanisms under more
strict contention conditions. We compare the performance of
optimal CSMA and our solution against that of a Round Robin
scheduling mechanism, which constitutes an ideal solution for
this case as it continuously executes a scheduling cycle where
all backlogged flows receive equal service priorities.

We measure the performance of each flow in terms of
throughput, and summarize the results by grouping flows of
the same type in Fig. 5. For fairness of comparison, the
throughput attained by Pareto ON-OFF flows is measured

5In this scenario the total number of flows at the MAC layer is 12, with
3 reverse flows for TCP acknowledgments. However, if the AP is shared, the
total number of transmitters reduces to 4.



during periods of positive backlog. The results show a highly
biased throughput distribution, with a clear dominance by CBR
and ON-OFF traffic flows.

With optimal CSMA, all TCP flows completely starve.
Indeed, TCP’s slow start mechanism begins by placing a
transmission unit at the flow’s MAC-layer queue, and refrains
from injecting more packets until a TCP-ACK is received.
However, such a transmission unit is never transmitted, since
other flows with high bitrate continuously maintain a longer
queue (and thus a higher contention aggressiveness by the
use of rule (2)). Also the throughput of Pareto ON-OFF
flows is significantly lower than for other protocols (27%
less on average than for Round Robin and 33% less than for
our solution) for similar reasons. When a Pareto transmitter
switches to idle, the remaining packets at the MAC layer
experience longer service delays as the flow queue gets shorter,
rapidly dropping down the flow throughput.

With our solution instead, fairness is restored by increasing
the throughput of the lowest performing flows, delivering
more than 200 kbps on average to TCP flows against zero
throughput by optimal CSMA while increasing the average
throughput of Pareto ON-OFF flows by 50%. We observe
that such performance gains are due to the use of service
meters in the place of queues for contention aggressiveness
adaptation. In fact, for any backlogged flow, we measure
positive injection rates at the service meter even if the arrival
of packets from upper layers has been interrupted. This allows
to deliver optimal CSMA adaptation to TCP flows even during
slow start, and to maintain high service at all backlogged
Pareto flows, even after the source has already entered the
OFF state. As a result, we observe high fairness gains, with
about 46% increase in network logarithmic utility with respect
to optimal CSMA.

D. Collisions under high contention

1) Evaluated scenarios: Finally, we evaluate the protocol
features for robustness to interference under high contention
presented in Section III-E. Such a mechanism iterates over
two main steps. First, each node in the network passively
detects surrounding flows by overhearing packet transmissions
over the channel. Second, all flows in the channel execute the
consensus protocol in Algorithm 2 to determine the maximum
level of contention at any point of the network itself, and use
that measure to symmetrically update the value of V at all
transmitters.

Hence, in the following we divide the evaluation of ro-
bustness to interference into two parts. First, we consider
symmetric scenarios where all flows have the same view of
the wireless channel. This allows to show the precise gains
due to the adaptation of V under different contention levels,
independently from the features required to attain consensus
among flows. Second, we extend the evaluation to the case
of multi-hop networks, where different nodes may observe
different contention levels depending on their position. This
second case evaluates the robustness of the system as a whole,
in challenging scenarios where consensus among multiple
flows is critical, and for which the effectiveness of Algorithm
2 becomes a central aspect.
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Fig. 6: Per-flow throughput normalized times the number of
contending flows in fully connected networks with different
sizes.

In all evaluated scenarios, we compare the performance of
our solution to that of optimal CSMA with different V choices
spanning three orders of magnitude (2, 8, 32, 125, 500, and
2000). Also, we consider a wide-range of network sizes up
to 50 flows under symmetric contention and up to 32 flows
for randomly generated networks. For brevity, we present a
subset of the obtained results in this section. However, the
conclusions derived apply to the entire results set. All flows
are elastic UDP flows and all transmitters operate at 6 Mbps.
The scenarios discussed in Section V extend this study to the
case with heterogeneous traffic patterns and asymmetric link
modulation rates, using random networks of up to 48 flows.

2) Symmetric contention scenarios: Fig. 6 shows per-flow
throughput in a fully-connected network with different number
of flows. All measures were normalized by multiplying them
to the number of flows in each scenario, to provide for a better
comparison.

We observe that the best configuration of optimal CSMA is
highly dependent on the network contention level. For small
topologies, a high value of V such as 2000 minimizes the
nominal optimization error, leading to high access and short
silent times. A low V , instead leads to unnecessarily long
delays, with up to 50% less throughput in the same scenarios.
In contrast, with high contention a large V leads to excessive
contention aggressiveness, which in turn raises the collision
probability of RTS/CTS packets up to 6 times, and degrades
throughput up to 44%. In those cases, a lower value of V
restores high performance by decreasing the aggressiveness of
all transmitters, thus reducing collisions.

With the automatic V-adaptation mechanism derived in
Section III-E, V is adapted to high values in small networks
yielding high channel utilization, but gradually lowered under
increasingly high contention levels to avoid interference. We
verify that the intended value of V is attained at all nodes
in each of the evaluated scenarios. Furthermore, all flows
are quickly detected by passive detection (i.e., overhearing
ongoing transmissions), with the worst delay in detection of
only 1.5s observed in the network with 50 flows.

Finally, 802.11 with BEB also delivers high total through-
put across all evaluated environments. However, in high
contention environments, the asymmetries in CW lengths at
different transmitters due to frequent collisions yields short-
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term unfairness, with high disparities in the throughput attained
by different flows (with up to 21 times maximum deviation
from the mean than for our solution).

3) Randomly generated multi-hop networks: We verified in
Section IV-D2 that the automatic adaptation of the V parameter
yields high performance gains in networks with symmetric
contention. However, in the general case, the density of flows
can differ at multiple network points, yielding asymmetric
contention levels. Next, we evaluate the performance of the
mechanisms presented in Section III-E in randomly-generated
networks that introduce additional challenges for the protocol
operation. In particular, the operation of Algorithm 2 becomes
a central aspect for nodes to agree in a common measure of
the network contention level.

We generate random networks using uniformly-distributed
node coordinates within a 3000m×3000m terrain. Flows are
generated by randomly selecting connected node pairs (within
a transmission range of 184m). For a meaningful analysis
based on network size, we filter-out disconnected networks
(otherwise each network partition can operate independently
yielding results similar to networks with smaller size). All
results shown in this section are averages obtained over 100
randomly-generated networks. We measure the performance
attained by each protocol in terms of throughput products.
Since the range of result values is highly dependent on the
topology, before averaging the throughput products over all
scenarios we normalize them over the maximum value attained
by any protocol in each case. The length of epochs for the
operation of Algorithm 2 is set to 2.5s.

Fig. 7 shows the results obtained for different network sizes
of 2, 8, and 32 flows. As the network size increases, smaller
values of V tend to raise performance due to a higher robust-
ness to collisions at high-contention network points. However,
we observe that the network density can vary significantly even
for a fixed network size, such that no fixed value of V works
well in all cases with the same number of flows. Because of
this, our approach exhibits higher performance, specially in
larger networks spanning a wide-range of possible network
densities.

Finally, we evaluate the effectiveness of Algorithm 2 in
determining the maximum network contention level Ωn. In
all executed simulation runs, Algorithm 2 converges to the
maximum value within 2 epochs (i.e., 5s). We further observe
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Fig. 8: Normalized sum of the throughput logs attained by
different protocols on average over 100 randomly-generated
topologies with multiple per-link modulation rates and hetero-
geneous traffic patterns.

that the first epoch is necessary for each node to passively
detect all neighbor flows, such that during the second epoch,
updated measures can be shared by all transmitters.

V. RANDOMLY GENERATED NETWORKS

In the previous section we evaluated the solutions proposed
in Section III separately, in different scenarios with channel
asymmetries, heterogeneous traffic and different levels of con-
tention. In this section, we evaluate the joint operation of these
three solutions in more challenging scenarios where all the
above conditions appear combined, simultaneously affecting
the protocol operation in different ways.

To this end, we generate networks using uniformly-
distributed random node coordinates within a
3000m×3000m terrain. Flows are generated by randomly
selecting connected node pairs (within a transmission range
of 184m). All results shown in this section are averages
obtained over 100 randomly-generated networks. We consider
different network sizes, with 16, 32, and 48 flows, obtaining
qualitatively similar results for each of them. Here, we present
the results obtained for the case with 48 flows, which is the
one with the widest range of contention levels. We randomly
assign different traffic types to each flow including CBR,
Pareto ON-OFF, and TCP traffic. To increase traffic diversity,
we consider 4 possible bitrates for CBR and Pareto ON-OFF
flows (0.5 Mbps, 1 Mbps, 1.5 Mbps, and 2 Mbps), randomly
assigned among flows of such types. The modulation rate at
each transmitter is assigned according to the SNR measured
at the receiver in isolation, so that shorter links use higher
modulation rates. The V values considered for optimal CSMA
are 2, 8, 32, 125, 500, and 2000, which is the range of values
used in the solution from Section III-E.

We measure protocol performance in terms of logarithmic
network utility. We normalize the obtained measures by the
maximum utility attained by any protocol in the same run,
and average the normalized results over the 100 considered
instances. The results, depicted in Fig. 8, show that our design
outperforms other solutions, with a 21%-68% utility increase
over optimal CSMA with different configurations, and more
than 21% average utility gain over 802.11. Furthermore, the
cumulative density function of logarithmic network utility in



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Normalized network utility

802.11
802.11 (RTS-CTS on)

oCSMA (V=2000)
oCSMA (V=125)
oCSMA (V=32)

oCSMA (V=2)
RO-CSMA

Fig. 9: Cumulative density function of the normalized logarith-
mic utility attained by different protocols over 100 randomly-
generated topologies with 48 flows.

Fig. 9 shows that in more than 90% of the generated network
instances, our solution delivers higher utility than the other
evaluated protocols.

VI. RELATED WORK

There has been extensive research in distributed CSMA op-
timization. The numerous works in this field come in a variety
of flavors depending on the research approach, system model,
performance objective, and other aspects. In the following, we
present a broad classification that provides an overview of the
entire area while contrasting our contributions to prior work.

Analytical works: Multiple analytical works were devoted
to the design and study of distributed CSMA algorithms
that maximize different performance measures [5]–[10]. Such
works differ on the analytical techniques in use, system model,
and the level of overhead in the proposed solutions. For
example, [5] was the first to show the throughput-optimality
of distributed CSMA under the multi-hop model. [6], instead
proposed utility-optimal mechanisms based on a fixed-point
approximation of the network performance. [7] derives an
alternative solution for throughput maximization under slotted
time. [8] proposes a generalized version of the algorithm
in [5] for utility maximization with no message passing.
All these works address network performance optimization
through rigorous analytical means within a well-defined set of
assumptions. While we also make use of analysis to support
our design, our main focus is on addressing sources of high
performance degradation for optimal CSMA to deliver robust
operation in a wide range of operating settings.

Experimental works: Other works focus on the imple-
mentation and experimental evaluation of the systems above
described [11]–[13]. The early experiences in [11], [12] mostly
focus on implementation aspects, such as the main challenges
for system implementation over existing hardware, respectively
for the case of wireless networks and wireless sensor networks.
The work in [13] evaluates optimal CSMA to identify how
different factors affect its performance in practical operational
settings. Our work is in part motivated by such studies, which
first identified the main sources of performance degradation
for optimal CSMA addressed here.

Other works: Like our work, others have also noted
the problematic effect of different assumptions in the op-

timal CSMA models, for example [14]–[18]. However, our
approach differs in a number of aspects. For example, while
[15] improves the operation of TCP over optimal CSMA via
modifications to the transport layer, we propose an extension
to optimal CSMA itself that allows optimal adaptation with
heterogeneous traffic. And, while [16], [17] propose the use
of reservation mechanisms like RTS-CTS to limit the effects
of collisions, we are the firsts to study the optimization-
robustness conflict under high levels of contention, and propose
an adaptive solution.

VII. CONCLUSION

In this document, we address the main sources of perfor-
mance degradation in optimal CSMA, to derive a distributed
system for proportional fairness in networks with channel
asymmetries, heterogeneous traffic, and high contention. We
propose a novel approach to design that combines robust-
ness with optimization, to overcome the high performance
degradation introduced in optimal CSMA by such factors.
Our contributions drive the development of future robust and
optimal CSMA, enabling high performance across a broad
range of network operating conditions.
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