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Abstract—In 802.11 managed wireless networks, the manager
can address underserved links by rate-limiting the conflicting
nodes. In order to determine to what extent each conflicting node
is responsible for the poor performance, the manager needs to
understand the coordination among conflicting nodes’ trans-
missions. In this paper, we present a management framework
called Management, Inference, and Diagnostics using Activity
Share (MIDAS). We introduce the concept of Activity Share,
which characterizes the coordination among any set of network
nodes in terms of the time they spend transmitting simultaneously.
Unfortunately, the Activity Share cannot be locally measured
by the nodes. Thus, MIDAS comprises an inference tool that,
based on a combined physical, protocol, and statistical approach,
infers the Activity Share by using a small set of passively col-
lected, time-aggregate local channel measurements reported by
the nodes. MIDAS uses the estimated Activity Share as the input
of a simple model that predicts how limiting the transmission
rate of any conflicting node would benefit the throughput of the
underserved link. The model is based on the current network
conditions, thus representing the first throughput model using
online measurements. We implemented our tool on real hardware
and deployed it on an indoor testbed. Our extensive validation
combines testbed experiments and simulations. The results show
that MIDAS infers the Activity Share with a mean relative error
as low as 4% in testbed experiments.

Index Terms—802.11, coordination, inference, interference,
WLANs.

I. INTRODUCTION

M ANAGED enterprise WLANs and wireless mesh net-
works regularly encounter underperforming links, i.e.,

links with throughput below an acceptable value determined by
the operator. A key corrective action available to the network
manager is to throttle other nodes that may be hindering the un-
derperforming link. However, to do so first requires identifying
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which node to throttle.While it is clear it should be a “neighbor,”
there may be a large set of candidate nodes for which throt-
tling can have vastly different effects, including no effect on
the underserved link. Moreover, it is not immediately evident
how much throttling any node will increase the throughput of
the targeted underserved link due to complex node interactions
and coordination.1

In this paper, we design MIDAS, a framework that uses on-
line measurements of network performance to infer the most
hindering nodes that cause a target link to be underserved or to
obtain poor performance. Moreover, MIDAS identifies effec-
tive management actions to increase the performance of the un-
derserved link by appropriately limiting the transmission rates
of the hindering nodes. Finally, we implement MIDAS on real
hardware and investigate its performance in an indoor testbed
and simulation.
MIDAS employs a methodology comprising three proce-

dures: 1) measurement collection, which gathers reports from
each node consisting of a small set of passive time-aggregate
measurements; 2) inference, which infers the coordination
among the transmissions of different sets of nodes using the re-
ported measurements; 3) prediction, which utilizes the inferred
information to predict the throughput gain of any target link,
corresponding to rate-limiting different conflicting nodes. In
particular, our contributions are as follows.
First, we introduce the concept of Activity Share, which char-

acterizes the coordination and interference among any set of
conflicting nodes. The throughput of a link is influenced by the
sender busy time (i.e., the more the sender senses the medium
busy, the less it can transmit) and the collision probability (i.e.,
even if it can transmit, its transmissions are corrupted). Coordi-
nation is critical to understand how different nodes contribute
to busy time and collision probability of each other. In fact, a
sender’s busy time is not simply the sum of the transmission
times of its neighbors, as neighbors that are hidden from one
another may transmit simultaneously. Analogously, link colli-
sions are not the sum of the collisions with each hidden ter-
minal because multiple hidden terminals may collide with the
same packet. Therefore, knowing how much conflicting nodes
(i.e., neighbors of sender or receiver of a link) are destructive
to the link requires understanding their coordination. In order
to capture node coordination, we define network state as a set

1Network managers have a number of options for mitigation, including
moving sets of access points (APs) or clients to alternate frequencies. Manage-
ment, Inference, and Diagnostics using Activity Share (MIDAS) could equally
be applied to such strategies (it would identify the best ones to move and
could recompute the new throughputs). However, evaluation of such alternate
mitigation schemes is beyond the scope of this paper.
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of transmitting nodes; accordingly, in each time instant, the net-
work is in a unique state. We define Activity Share as the time
share the network spends in each possible state in a given in-
terval. That is, the Activity Share is a vector including, for each
possible set of nodes, the fraction of time they spend transmit-
ting simultaneously. Note that the Activity Share depends not
only on the topological relationships between the nodes as de-
termined by carrier sensing and link interference, but also on
the transmission rate and pattern of each node under the current
traffic conditions. Furthermore, since the transmission pattern
of any node depends on the transmission pattern of its neigh-
bors, and the transmission pattern of its neighbors depends on
the transmission pattern of their neighbors (and thus recursively
of all nodes in the network), the Activity Share captures the ef-
fects of global network interactions that extend beyond node lo-
cality. In particular, the Activity Share captures the coordination
among the transmissions of any set of conflicting nodes as de-
termined by the current global network conditions. In contrast,
alternative indicators, such as the individual node transmission
rates, are insufficient to determine how conflicting nodes influ-
ence the target link since they do not capture the coordination.
For example, the conflicting node with the highest transmission
rate might mostly transmit simultaneously with other conflicting
nodes, such that limiting its rate may scarcely benefit the target
link. We will show how the manager can utilize the Activity
Share as a tool to understand the network behavior and to de-
termine a strategy to change it, e.g., to increase the throughput
of a congested or underperforming link. Unfortunately, the esti-
mation of the Activity Share is challenging because it cannot be
locally measured by the nodes. In fact, during the reception of
multiple overlapping packets, nodes cannot identify all senders,
and thus recognize the network state.
Second, we design a tool to infer the Activity Share using a

small set of passively collected, time-aggregate local channel
measurements, reported by every node. Inferring the Activity
Share requires computing the temporal distribution of the dif-
ferent network states, i.e., how long the network spent in each
of them. We develop a technique to eliminate infeasible dis-
tributions by incorporating physical rules (e.g., the busy time
of a node should coincide with the sum of the durations of the
states in which its neighbors transmit and that node does not).
Unfortunately, there can be an infinite number of temporal dis-
tributions that yield identical measurements. Consequently, we
penalize unlikely distributions by incorporating protocol rules
(e.g., the occurrence of states in which adjacent nodes simul-
taneously transmit is unlikely), and select a representative by
using a statistical approach based on entropy considerations. To
further limit the complexity of our problem, we propose a tech-
nique to reduce its dimensions by actually eliminating the un-
likely distributions.
Third, we develop a tool to predict the throughput increase

achievable on the target link by rate-limiting the links formed
by the target link’s conflicting nodes. The Activity Share per-
mits assessment of the current network conditions, however it
lacks predictive power to identify effective rate-limiting actions
and to anticipate their outcomes. The challenge is to understand
how changing the transmission time of a conflicting node af-
fects the Activity Share, and subsequently how the new Ac-
tivity Share affects the target link’s throughput. We design a
simple throughput prediction model that derives its inputs from

the current network conditions, i.e., from the inferred Activity
Share, thus representing the first throughput model based on on-
line measurements.
Fourth, we extensively evaluate the accuracy of MIDAS

by combining testbed experiments and simulations. We im-
plemented MIDAS on real hardware and deployed it on an
indoor testbed, where we investigated its sensitivity to dif-
ferent network settings under real channel conditions. The
results show that MIDAS infers the Activity Share with high
accuracy, i.e., with a mean relative error as low as 4%. In
order to extend our validation to a broader set of scenarios,
we performed numerous simulations. A key finding is that
by rate-limiting different conflicting nodes for the same fixed
amount, the throughput of the target link can increase from
7% to 172% of the rate-limited quantity. We also validate the
effectiveness of the Activity Share in supporting throughput
prediction and show that MIDAS anticipates the benefits of
alternative rate-limiting actions with an error lower than 20%
of the rate-limited quantity.
The remainder of this paper is organized as follows.

In Section II, we present MIDAS and define the Activity
Share. We develop a technique to infer the Activity Share in
Section III. A throughput prediction tool using the Activity
Share is described in Section IV. Section V presents testbed
and simulation results. Finally, Section VI overviews related
works, and Section VII concludes the paper.

II. MIDAS FRAMEWORK

A link can be considered underserved due to a discrepancy
between the network manager’s targeted link throughput and
the actual throughput. The network manager’s policy for setting
target throughputs (incorporating factors such as fairness, QoS,
pricing, offered load, etc.) is beyond the scope of this paper. The
objective of MIDAS is to determine the causes of the poor per-
formance and design corrective actions.2 While local node ob-
servations can point out problematic links, in general the causes
of the low throughput cannot be locally inferred. For instance,
in the case of high packet drop rate, the local measurements can
seldom determine the hindering nodes.MIDAS helps improving
the problematic link by inferring the impact of hindering trans-
mitters and by rate-limiting the most destructive flows.
The severity of link-hindering interactionsmainly depends on

three factors: 1) network topology: nodes’ pairwise relations, as
determined by carrier sensing and interference, determine the
form of interaction, e.g., hidden terminals are responsible for
transmission corruptions, while carrier-sensed nodes affect de-
ferral; 2) link transmission rates: nodes that transmit few packets
are less likely to interfere with a target link; and 3) link trans-
mission coordination: the number of packets transmitted on a
link and corrupted by a hidden terminal depends on how fre-
quently the link sender and hidden terminal transmit simulta-
neously. Note that transmission rates and coordination strongly
depend on the traffic load of each node.
In this section, we introduce a novel metric termed Activity

Share, which captures the coordination between any possible
set of nodes by measuring the fraction of time they transmit si-
multaneously. Even though the Activity Share does not directly

2In this paper, we only consider 802.11 MAC issues, e.g., we do not address
throughput losses due to TCP dynamics, or low received signal strength.
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measure the interference between nodes, it reflects node inter-
actions. Thus, the Activity Share is affected by node topological
relationships, traffic load,MAC protocol, etc.Wewill show how
MIDAS can utilize the Activity Share to evaluate the potential
effects of alternative corrective actions (see Section IV).Wewill
also show that the Activity Share cannot be locally observed by
the network nodes and describe how it can be inferred frommea-
surements collected by the nodes. Note that, in contrast to the
Activity Share, alternative indicators that evaluate pairwise con-
flicts between interfering links taking into consideration only
topological information (e.g., the conflict graph [11]) miss the
important dynamic information about the coordination of the
transmissions of multiple nodes.

A. Activity Share: Fundamental Element of Network
Observation

As previously explained, our management framework aims
to identify the originating causes of underserved links and to
increase their throughput by rate-limiting conflicting nodes.
In this study, we consider 802.11 stationary multihop wireless
networks, including enterprise WLANs and mesh networks. In
such networks, nodes can affect the throughput attained on a
link (sender–receiver pair) by two key means: 1) reducing the
time the medium is perceived as free by the sender, thereby
forcing the sender to defer; 2) corrupting the packet reception
at the receiver end, i.e., colliding. In multihop topologies,
despite the use of the carrier-sensing mechanism, several nodes
that are in conflict with a specific transmitter can potentially
transmit simultaneously. Hence, it is challenging to anticipate
the benefits of rate-limiting conflicting links on the sender busy
time or collisions of the target link, and thus on its throughput.
Even knowing the exact packet transmission rate of each node
in conflict with the link of interest is not sufficient because the
throughput gain mainly depends on the coordination among the
conflicting nodes as illustrated in the following example.
Example: The following example shows that node coordi-

nation is the key to understand the effectiveness of rate-lim-
iting conflicting nodes to improve the throughput of an under-
served link. Let us consider the simple wireless network de-
picted in Fig. 1(a), where a dotted line connecting two nodes
indicates that the two nodes are within carrier-sensing range.
The link is identified as underserved; the goal of the net-
work manager is to assess how decrementing the transmission
rates of the conflicting links formed by nodes 1 and 2 can ben-
efit the throughput of link . Since nodes 1 and 2 are not co-
ordinated by carrier sensing, they can transmit simultaneously.
Fig. 1(b) depicts a typical timeline of the transmissions of the
three nodes. The continuous deferral is the cause of the perfor-
mance issue of link ; in fact, can transmit only when
both nodes 1 and 2 are silent. Thus, decreasing the transmission
rate of only one of them will produce a minimal benefit to ;
this is because only a small portion of the released airtime will
result in free airtime for . The analysis of the coordina-
tion between the conflicting nodes 1 and 2, and in particular of
the large overlap between their transmissions, can promptly lead
to this conclusion. Obviously, this is only a simple case, where
the large overlap between the transmissions of 1 and 2 is not
surprising. However, in more complex topologies with several
conflicting nodes, it is not clear how to determine node coordi-
nation and its effect.

Fig. 1. Example of transmission alignment due to (lack of) carrier sensing.
(a) Topology. (b) Typical timeline.

Network State and Activity Share: The key to understanding
how conflicting nodes affect an underserved link is to deter-
mine the time they spend transmitting simultaneously. For in-
stance, in the example in Fig. 1, the transmissions of nodes 1
and 2 mostly overlap, anticipating a small gain in free airtime
perceived by the link , from the reduction of the transmis-
sion times of either one. Furthermore, the higher the number of
nodes in conflict with a target link that can potentially transmit
simultaneously, the lower the gain from limiting the transmis-
sion time of a single node. For instance, if in the example in-
stead of two uncoordinated nodes in conflict with link ,
there were three or more such nodes, the free airtime gained by
rate limiting a single node would be even lower.
Let us consider an -node network. To formalize the con-

cept of simultaneous transmission of a set of nodes, we define
network state and Activity Share as follows.
Definition 1: The Network State denotes the trans-

mission status of each node in the network. is an
-dimensional vector comprising an entry for each node

that indicates whether the node is transmitting or idle in the
state. , , where
indicates that node is transmitting or not, respectively. Note
that each network state is univocally identified by the set of
transmitting nodes.
Since there are nodes in the network, there are possible

states denoted by . The network transitions in
time through a succession of network states. The Instantaneous
Network State at time , , is the state of the network at
time , i.e., iff the network state at time is .
Next, we define the Activity Share, which is the time share the

network spends in each state per time unit.
Definition 2: The Activity Share of the network state , de-

noted by , is the fraction of time during the interval
for which the network was in state , i.e.,

, where denotes the indi-
cator function such that if the network state

at time is , and 0 otherwise. The sum of over all
possible states adds to one:

(1)

We separately denote as Activity Share, , the distribution
of time the network spent in each state during the time in-
terval , i.e., . Note that if the
network is stationary, is the probability
that the network at any time instant is in state . In the
following, we consider large enough to satisfy stationarity,
and we drop from our notation.
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The estimation of the Activity Share is challenging because
it cannot be locally measured by the nodes. Specifically, the
nodes cannot identify the transmitters of all the packets they
carrier-sense. In fact, some of the overlapping packets (e.g., sent
by 1 and 2 in Fig. 1) may collide at the intermediate nodes (e.g.,
node ), preventing the decoding of at least one of them. An-
other obstacle is the strength of the received signal, which may
exceed the carrier-sense threshold, but not be sufficiently greater
than the background noise (plus interference) to permit the de-
coding of the packet. In order to overcome these challenges, it
is necessary to analyze the combined measurements of different
nodes.

B. Measurements

In MIDAS, each network node continuously collects infor-
mation and delivers a report to the manager at every report
interval.3 In this paper, we suggest a new scheme that we will
use to infer the Activity Share, given a set of measurements re-
ported by the nodes .
A tradeoff emerges between the amount of information con-

tained in and the estimation accuracy of the Activity Share.
If contained complete traces of the exact times and dura-
tions of all transmissions of node , the manager could use the
reports to reconstruct a global trace of the transmissions in the
network [such as in Fig. 1(b)], and hence obtain the Activity
Share by inspection. However, the amount of information that
needs to be collected and the timely delivery of such traces
would overwhelm the network resources. For example, a set of
traces satisfying our requirements is collected in [6]; therein,
the authors show that the overhead is between 100 and 500 kb/s
per node, without even considering the multiplicative effect of
multihopping [4].
We consider a highly simplified and easily measured set of in-

puts consisting of information passively collected from the
local network card and time-averaged over the report interval.
Each node observes the local channel in three states: if the
measuring node is transmitting; if the node is not transmit-
ting but the total received energy exceeds the carrier-sensing
threshold; if neither the received energy exceeds the carrier-
sensing threshold, nor the node itself is transmitting. Notice that
the state reflects the activity of all carrier-sensed nodes and
does not distinguish between different transmitters. The report

includes the time shares , , node observed the
channel in any of the three states during the report interval.
Clearly, , ; thus needs to include only
two out of the three time shares. An implementation of the mea-
surement collection tool is presented in Section V-A. In contrast
to trace-based solutions, our reports only include two numerical
values.

III. INFERENCE TOOL

The reconstruction of the Activity Share from the reports is
challenging because the time-average measurements in are
the result of the transmissions either of the individual node
(i.e., ) or of all its neighbors (i.e., ). In both cases, it is

3The actual placement of the manager’s node is an important design param-
eter; in fact, an optimal placement would permit to reduce MIDAS overhead by
efficiently aggregating node reports and to shorten the report delivery delays.
However, in case the manager’s node is not optimally placed, MIDAS reports
can still be delivered leveraging regular wireless network routing, with minimal
overhead penalty due to the reports’ small size.

not possible to locally determine the overlapping intervals of
subsets of neighbors and of sets of nodes that do not share
neighbors. In this section, we will show how to overcome this
issue; our solution consists of three elements. First, in order to
obtain accurate estimations, we use the inputs to constrain
the domain of the feasible (Section III-B). Since the con-
straints do not generally identify a unique solution, we pro-
pose an optimization problem to choose a single representative

(Section III-C). The last element of the solution addresses
the computational complexity of the proposed problem and re-
duces the dimension of the solution space using protocol
rules of 802.11 (Section III-D). In the experimental results in
Section V, we consider practical implementation issues, such
as report losses and time-varying channel.

A. Network Model

We consider a single-radio, single-channel network, and we
abstract it as a graph , where the vertices repre-
sent the nodes, and the edges represent the carrier-sensing
relationships among the nodes. The existence of a sensing edge

means that node carrier-senses transmissions from
node , and vice versa. We define the set of the nodes that node
carrier-senses as . We assume that
the topology of the graph with respect to is fixed during any
observation interval and known to our inference tool (e.g., via
offline link profiling [23] or passive online estimations [14]).

B. Report-Based Constraints

In order to obtain an accurate estimation of the Activity Share,
we use the reported measurements to constrain the feasible
domain. Since the local observations of the channel of any node
provide information about the cumulative duration of sets of
network states, the actual must satisfy the constraints im-
posed by all local observations, and hence lies in the feasible
region the observations define. Accordingly, we can derive the
following constraints:

(2)

(3)

(4)

where denotes the th component of the vector. Equa-
tion (2) constraints the time share each node is transmitting:
The sum of the Activity Shares of states in which node trans-
mits should be equal to the fraction of time transmitted. Equa-
tion (3) is related to the busy time of the nodes. In our network
model, the state of a node is busy if the node is not transmit-
ting and any of the nodes in is transmitting. Hence, the
Activity Shares of states, in which any of the nodes in
are transmitting and node is not, sum up to . Notably,
also the busy time of the nodes carries information about the
Activity Share by inducing constraints on the duration of the
network states including transmissions from any neighboring
node. Equation (4) relates to the idle time of the nodes and can
be obtained with considerations analogous to the previous two.
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Simple considerations show that any of the three equations asso-
ciated with each node is redundant with respect to the remaining
two and (1). This fact can be easily verified by noticing that the
state indexes used for the three constraints (2)–(4) are a partition
of the whole set of indexes, thus their Activity Shares sum up
to the left-hand-side term of (1). In the following formulation of
our inference problem, we consider (4) redundant for all nodes
with respect to (1)–(3).
We conclude this section with two remarks. First, the report-

based constraints, which are key to our inference methodology,
are exclusively based on node cumulative temporal channel ob-
servations. This makes our methodology robust to heteroge-
neous packet lengths and physical transmission bit rates of the
participating nodes. Second, the assumption that the links in
are fixed plays a crucial role in enforcing the constraints in (3)
and (4). Even though this is a simplifying assumption, related re-
search shows that threshold-based carrier-sensing relationships
can be reasonably well approximated as binary [22]. Our ex-
perimental results (see Section V-B), and a specific discussion
in [17], evaluate the effects of this assumption in a static in-
door environment. It is part of our ongoing work in the gen-
eralization of the report-based constraints to encompass cases
of very high channel variability. Specifically, we are consid-
ering to associate weights to the Activity Share elements in the
left-hand-side summations of (3) and (4), representing the prob-
ability that the signal strength received by node when the net-
work is in state overcomes the carrier-sense threshold.

C. Entropy-Based Statistical Solution

In this section, we show how to determine a representative
close to the actual occurred during the measured interval.
The representative should satisfy the report constraints since
the actual determines the reported measurements. However,
the constraints we defined do not identify in general a single ,
but rather a feasible solution domain. Each Activity Share distri-
bution in the domain defined by the reports would have gen-
erated the exact same observations obtained by the nodes, hence
the selection of any of these is admissible. However, a key
observation is that not all feasible solutions are equally likely,
e.g., 802.11 introduces a bias against states that include simulta-
neous transmissions of mutually carrier-sensing nodes. We for-
malize this bias using the a priori distribution of the states, and
we select our representative as the feasible solution closest
to the a priori distribution.
Protocol-Driven a Priori Information: As shown in

Section II-A, we can give a statistical interpretation of the
components of the Activity Share. Each corresponds
to the probability the network is in the state at a random
time instant. Because of the carrier-sensing behavior of 802.11,
not all network states have a priori identical probabilities of
occurrence, i.e., is not a priori uniform (i.e., equal to
) over all states . In fact, 802.11 carrier sense aims to pre-

vent the occurrence of states where neighboring nodes transmit
simultaneously, i.e., .
Practically, two neighbors can transmit simultaneously only if
their backoffs expire in the same slot, while nonadjacent nodes
can initiate their transmissions independently. In general, the
larger is the number of neighboring transmitting nodes in a
state, the lower is the probability of occurrence of that state
since such occurrence would require that a number of backoff

counters expired exactly in the same slot. As a consequence,
among the admissible , our scheme should favor the that
do not assign large probabilities to states including neighbor
transmissions.
We model the protocol behavior of 802.11 by identifying an

a priori distribution that assigns probabilities to the states
unequally. The computation of the exact a priori probability of
each state is complicated because the probability of occurrence
of states including multiple adjacent transmitters depends on the
global network topology. In order to provide a simple solution,
we use a coarse-grained approximation that assigns to each net-
work state an a priori probability exponentially decreasing with
the number of adjacent transmitters the state contains. For ex-
ample, a state containing two pairs of adjacent transmitters has
half the a priori probability of a state that contains only one pair.
Notice that this assignment partitions the states in classes,
where all the states in the same class contain identical num-
bers of adjacent transmitters, and thus have equal probabilities.
For instance, class 0 includes all states that do not contain ad-
jacent transmitters and have probability , class 1 includes all
states that contain only one pair of adjacent transmitters and
have probability , etc.
Minimum Relative Entropy Inference: In the previous

paragraph, we formalized our knowledge of the protocol be-
havior by using an a priori distribution of . Our objective
is to select the feasible closest to the defined a priori distri-
bution. We propose to use the concept of Kullback–Leibler dis-
tance [7] to quantify the distance between two distributions and
select the representative as the feasible solution that mini-
mizes such distance from the a priori distribution. Accordingly,
the problem is formulated following the Minimum Relative En-
tropy Principle.4 Out of the feasible solutions that have equal
Kullback–Leibler distance from the a priori distribution, the
Minimum Relative Entropy Principle favors the solutions that
spread the probability of the states in the same class as evenly
as possible. In fact, in absence of any other information about
the 802.11 protocol behavior, all states that the a priori distribu-
tion assigns to the same class have identical probability. Hence,
any different probability assignment would introduce an unmo-
tivated bias.

Inference Problem: We formulate the inference
problem as

s.t.

(5)

where is the cardinality of the set of admissible network states
( in this case); is a -dimensional vector, whose th entry,
, is ; is a -dimensional vector, whose th entry,
, is the a priori distribution of the network state ; is an

matrix, whose th entry is 1 if , 0 otherwise;
is an matrix, whose th entry is 1 if and

; and are -dimensional vectors,

4Note that minimizing the relative entropy is equivalent to maximizing the
expected value of the log-likelihood.
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whose th entries are the measurement results and , re-
spectively. Notice that the objective function is the relative en-
tropy between the solution and the prior distribution ; fur-
thermore, the first and second constraints (each -dimensional)
correspond to (2) and (3), respectively, while the third constraint
(one-dimensional) corresponds to (1).

D. Protocol-Based State-Space Reduction

The solution space of the inference problem is generated
by variables, i.e., the Activity Share components that corre-
spond to all possible network states; as the number of network
nodes increases, the exploration of such a large space to find
the best candidate solution becomes computationally complex.
In order to reduce space and complexity, we again leverage the
protocol properties of 802.11, which permit to discover unlikely
states.
As we observed, due to carrier sensing, the occurrence of
that assign large probabilities to states including neigh-

boring transmissions is unlikely. We take advantage of this
consideration by excluding from the solution space the with

, for any including neighboring transmitters.
Practically, this is equivalent to reducing the number of Activity
Share components by eliminating those corresponding to the
unlikely . In terms of graph theory, the set of transmitters
in any allowed state is an independent set of the graph .
Thus, the number of network states, and of Activity Share
components to be estimated, reduces to the cardinality of the
set of the independent sets, which is generally still exponential
(in graphs with bounded node degree [8]) but smaller than .
By using this simplification, the resulting inference problem

can be obtained from Problem (5) by equating to the cardi-
nality of the set of the independent sets of the network and by re-
placing with , . The latter substitution reduces the Min-
imum Relative Entropy objective to Maximum Entropy: The
probability of all the states in the solution will be spread
as evenly as possible according to the constraints.
In our experiments, we verified that the enhancement de-

scribed above permits to double the network size that we can
solve with similar time budget. While simplifying the computa-
tion, the illustrated state-space reduction is only an approxima-
tion of the reality and may penalize the accuracy of the obtained
solution. We investigate the performance of the state-space re-
duction in Section V-C, while we adopt the full state space rep-
resentation in the testbed results in Section V-B.

IV. MITIGATION OF HINDERING TRANSMISSIONS

In this section, we address our goal of improving the
throughput of underserved links. Specifically, we show how
MIDAS uses the Activity Share to predict how limiting
the transmission rate of any hindering node will benefit the
throughput of the problematic link. The manager uses our
prediction tool to anticipate the outcome of alternative correc-
tive actions (a corrective action is a pair of conflicting node
and rate-limiting amount) and to choose the most profitable
according to the management policy. The rate-limiting amount
of any conflicting node may be determined, e.g., considering
the current throughput surplus of the links that node forms, with
respect to a previously agreed minimum. In case rate-limiting
a single conflicting node reveals insufficient to reach the target

throughput on the underserved link, the manager iterates the
evaluation after collecting new reports.
Our prediction tool is comprised of two procedures: 1) we ad-

dress the main challenge of estimating the Activity Share after a
potential corrective action; 2) based on the new Activity Share,
we estimate the potential throughput gain that any single link
can obtain, in particular the target link. With regard to the first
procedure, the key technique we devise follows a differential ap-
proach in which we consider that small deviations from the cur-
rent network conditions have limited effect on the nodes other
than the rate-limited and the underserved. The second procedure
uses a simple model that identifies how the Activity Share af-
fects the busy time and collision probability of the underserved
link. In this section, we discuss each step separately.

A. Evolution of the Activity Share After Rate-Limiting

In order to obtain the potential throughput gain of the under-
served link by rate-limiting a specific node (Section IV-B), we
first compute the Activity Share after rate-limiting. Our method-
ology follows a differential approach that assumes that small
changes on the transmission rate of a node do not affect the rel-
ative durations of the states in which that node transmits. In par-
ticular, we assume that the Activity Share of the states in which
the rate-limited node transmits will reduce in proportion to their
values before rate-limiting. Note that based on the differential
approach, the total time the nodes transmit, other than the under-
served and rate-limited nodes, is not affected by the change. In
practice, this can be realized, e.g., by having the transmission
rates of neighboring links fixed to the value before the man-
agement operation. In the following, we illustrate the analytical
aspects of the differential approach, while its accuracy is im-
plicitly evaluated by the experimental results in Section V (see
in particular, Figs. 7 and 13–15).
Denote (Activity Share old) and (Activity Share

new) as the Activity Share before and after the rate-limiting
action, respectively. Let us consider the case of rate-limiting
the packet transmission rate (i.e., at the MAC layer) of a single
conflicting node of a quantity . We define as
the states in which does not transmit (i.e., ), and

as the states in which does (i.e., ), and we
establish that the th states, i.e., and , differ only for
the th entry, i.e., and

. Using the differential
approach, the Activity Share of the network states (in )
in which transmits decreases proportionally to the duration
of those states in , and the state benefits from the
decrease of the state , for all . Formally

(6)

(7)

where is the duration of the packets sent by , and is the
rate-limiting amount of node in terms of packets per second.
For ease of exposition, we assume fixed duration of the data
packets transmitted over all links; the use of different bit rates
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and thus packet durations on different links may be accommo-
dated extending to a vector form. Next, we will use the
to obtain the new collision probability of the underserved link.

B. Relationship Between the Collision Probability of the
Underserved Link and the Activity Share

According to [10], we can express the maximal throughput
of any link after the rate-limiting action by estimating the new
busy time of its sender and the new collision probability. The
new busy time of the sender can be obtained from the new Ac-
tivity Share using (3). In this section, we show how to use the
new Activity Share to determine the new collision probability
of any link, and in particular of the underserved. For the sake of
simplicity, our derivation only considers the packet collisions
with hidden terminals, which are typically the overwhelming
majority.
Given the Activity Share, the main challenge in computing

the collision probability is in the transformation of the cumula-
tive time the colliding nodes have transmitted simultaneously
into the number of collided packets. We illustrate this issue via
a simple example. Consider an underserved link affected
by a hidden terminal , and suppose that we aim to determine
the collision probability on using the Activity Share
distribution. Let be the sum of the Activity Share of the states
where nodes and transmit simultaneously. Since a packet
on can collide at most with two different packets sent
by (assuming a fixed and identical duration of the packets
sent by and ), the total number of packet collisions that
may have caused on can be any integer in the range

, where (resp. ) denotes
the number of packets transmitted during the observation
interval by node (resp. ). This shows that a large range
of collision probabilities is consistent with the same Activity
Share distribution. We remark that the example above is only
provided for illustrative purposes and is not intended to limit
the applicability of our solution. In the following, we use a
binary channel assumption; accordingly, a packet on is
corrupted if it overlaps for any arbitrary small duration of time
with any other packet reception at .
In order to compute the collision probability of a prob-

lematic link , we determine the success probability, i.e., the
probability that the transmission of a packet from to entirely
fits within a time interval during which its hidden terminals
are not transmitting. To estimate this probability, we model the
transmission attempts of as the sampling of an ON/OFF process
representing the aggregate transmissions of all the hidden termi-
nals of [10], [23]. The ON period is the interval during which
at least a hidden terminal is transmitting; the OFF period is the
gap in the activity of all the hidden terminals that node has to
discover randomly.
In the analysis of this process, we make the following

assumptions.
1) In general, the transmissions of the hidden terminals are not
coordinated and may overlap. Thus, the durations of the ON
and OFF periods are variable. In this case, it is a common
assumption to model them distributed exponentially.

2) The duration of an ON period can range from very short,
e.g., an individual ACK transmission, to much longer than
the duration of a data packet , in case of consecutive over-
lapping transmissions of different hidden terminals. We

balance these cases by approximating the average duration
of an ON period, , with .5

3) Conditioned on the fact that can transmit, i.e., that the
nodes in are not transmitting, we assume that the
transmissions of occur at random points in time.

In order to succeed, a packet transmitted on needs to
start during an OFF period and be entirely received during the
OFF period. Thus, using assumptions 1) and 3), we can write

the collision probability as: [10];

assumption 2) permits to obtain as a function of .

In the remainder, we show how to express (and thus
) as a function of the Activity Share.
In order to do this, we compute the total duration the process

is in ON and states during a measurement in-
terval : The ratio between these two quantities is equal to
the ratio of their averages . Recall that the ON and
OFF states model the sampling of node of the channel at the
receiver, and that node cannot sample the ON/OFF process (i.e.,
transmit) during the transmissions of nodes in . Hence, we
prune all time intervals in which at least one of ’s neighbors is
transmitting, i.e., we consider only time intervals in which no
node in is transmitting. Thus, the whole duration of the
ON/OFF process in is . Let us denote
as the set of hidden terminals of . Then, the whole duration
of the ON period in is the time at least one hidden terminal
is transmitting and no node in is transmitting. By using
the Activity Share, we denote the latter interval as ,
where

(8)
Finally, the identity between and the ratio of their

total durations in discussed above leads to

(9)

By replacing (9) into , we can write

(10)

which expresses the collision probability of a link using ex-
clusively the Activity Share. Using (10), we can compute the
throughput according to [10].

V. PERFORMANCE EVALUATION

In this section, we validate MIDAS through an extensive set
of testbed and simulation experiments. After introducing our ex-
perimental platform and implementation, we investigate the per-
formance of MIDAS in a real testbed deployment. Finally, we
extend the evaluation by simulating a broader set of topologies
with larger numbers of nodes, in order to determine the sensi-
tivity of the tool to node density and traffic load, and show its
robustness to missing reports and real traffic distribution. Addi-
tional results can be found in [16] and [17].

5Notice that in case different links use different bit rates and thus packet dura-
tions, the average duration of an ON period may be approximated as the average
of the durations; the evaluation of this enhancement is beyond the scope of this
paper.
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Fig. 2. Layout of our testbed deployment.

A. Experimental Testbed

WARP: To validate MIDAS, we used the Wireless Open-Ac-
cess Research Platform (WARP) developed at Rice University,
Houston, TX[1]. The platform, built around a Xilinx Virtex pro-
cessor, includes the MAX2829 radio chipset that provides RSSI
readings. Moreover, WARP implements an OFDM layer similar
to 802.11a. In our configuration, the boards operate at 6 Mb/s
using BPSKmodulation and are equipped with a 3-dBi antenna;
all boards are controlled by a laptop via Ethernet connections.
Inference Tool Implementation: The implementation of the

inference tool consists of two basic components. 1) The trans-
mission duration counter measures the time duration the radio
is in transmission state by timing the functions that control
the transmission operations. 2) The subpacket RSSI time sam-
pler measures the time duration the received signal strength,
including noise and interference, exceeds a given threshold.
In contrast to existing off-the-shelf drivers, such as MadWifi
for Atheros chipsets,6 which only provide an RSSI sample per
packet, our implementation samples the RSSI values at regular
time intervals shorter than the packet duration and compares
them to the carrier-sensing threshold.
Validation Tool: Two additional components were imple-

mented only for validation purposes. 1) The fast RSSI sampler
behaves identically to the subpacket RSSI time sampler de-
scribed above, but supports higher sampling rates via a digital
design, thus improving the precision of the busy time estima-
tion. 2) The trace collection logic provides the ground truth
of our experiments by collecting and storing on the board’s
memory the timestamps and durations of all radio-transmitted
packets and sends batch traces to a control station. The in-
dividual node traces are not used by the inference tool, but
permit to reconstruct offline a network-wide global trace of the
transmitting activity of all nodes and to extrapolate the actual
Activity Share. In order to synchronize the individual traces
from different nodes, the control station issues an Ethernet
broadcast to the boards at the beginning of each experiment,
which is used to reset their clock. We verified that our technique
achieves clock offsets below a few microseconds.
Testbed Setup: We conduct our experiments on a five-node

indoor testbed. In order to verify the robustness of MIDAS to
different node densities, we alternately deployed our nodes in
different topological configurations. We list the locations used
in our topologies in decreasing order of density, with reference
to Fig. 2. In the single-hop topology , all nodes are next to
each other close to position . In the multihop topology , the
nodes are located in the positions . In themultihop
topology , the nodes are in positions . Each
board transmits 1000-B data packets, with constant interpacket
time whose value depends on the experiment. Each experiment

6Multiband Atheros Driver for Wifi available at http://madwifi.org/

Fig. 3. Activity share inference (testbed).

run lasts 10 s and, where not differently specified, the reported
results are cumulative over 10 runs.

B. Testbed Results

Experimental Methodology: We evaluate the accuracy of the
inference tool by assessing its predictions in different testbed
and simulation settings. At the end of each experiment per-
formed, we collect a single report from each node including its
transmission time and busy time, which represent the parame-
ters and in (5). We compute the optimal solution of (5) cor-
responding to the collected values using the MATLAB solver
fmincon. We establish the accuracy of the Activity Share infer-
ence by comparing our estimations to the ground truth provided
by an omniscient centralized approach based on the collection
of detailed traces (see the Validation Tool above).
An example of the results obtained from a single run on

topology is shown in Fig. 3. In the figure, we present the
scatterplot of the predicted and actual (ground truth) Activity
Share obtained in the single run. Each value on the -axis
denotes a network state corresponding to the binary repre-
sentation of (once mapped, the bit indices 0–4 to the nodes
positioned in , , , , and , respectively, e.g., maps
to the network state , i.e., where only nodes and
transmit). The graph shows an excellent agreement between the
inferred Activity Share and the actual Activity Share obtained
from the traces. Furthermore, we can observe that a number
of states have very short durations: These typically include
simultaneous transmissions of nodes in carrier-sensing range,
which occur less frequently than the others.
Sensitivity to Network Density: Network density can highly

affect the accuracy of the Activity Share estimation. In order to
infer the Activity Share, it is challenging to estimate the dura-
tion of overlapping transmissions of nonneighboring nodes by
combining their transmission reports with the busy time share
reports of their common neighbors. On the one hand, the lower
the density, the more tightly the busy time share reports con-
strain the overlapping transmissions of nonneighboring nodes,
but also the fewer reports that reflect such events. For example,
if a node has only two transmitting neighbors and (where
and are not neighbors), ’s busy time share report permits

to exactly recover the share of time that transmissions of and
overlapped, as . However, if a node has three

transmitting neighbors (which are nonneighbors to one another),
based on the busy time share of the node, it is not possible
to determine the amount of overlapping transmissions of any
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Fig. 4. Inference sensitivity to network density (testbed).

two or all three of the neighbors. In fact, the higher the den-
sity, the more combinations of overlapping transmissions of a
node’s neighbors are consistent with the node’s busy time share
report. On the other hand, the higher the density, the larger is
the number of nodes that observe the transmitting activity of a
given set of transmitters. Accordingly, more constraints can be
imposed on the Activity Share estimation based on the diversity
of the reports of different neighbors. In order to investigate the
influence of network density on the Activity Share accuracy, we
run experiments on all three different topologies of our testbed:
topology , which is densest, as all nodes are connected to one
another; topology , which is less dense; and topology ,
which is the sparsest.
Fig. 4 shows the cumulative distribution function (cdf) of the

relative error of the Activity Share inference (notice that the
probability of a state used to compute the cdf is the Activity
Share of that state, i.e., its duration). The -axis indicates the rel-
ative error committed, while the -axis is in (nondimensional)
time-ratio units. For instance, the point in (0.1,0.7) indicates that
the network spends 70% of the time in states where our infer-
ence tool commits an error of 10% or less. All plots show that
our inference technique is remarkably accurate under all den-
sity conditions. Furthermore, is the most accurate solution,
while the plot mostly dominates . The respective mean
relative errors, i.e., the relative error committed in the state oc-
cupied in a randomly sampled instant, are 4.6% for , 9.9% for

, and 11.5% for . These results are obtained for broad-
cast packets. However, similar values have been obtained using
one-hop unicast flows, i.e., 4.8% for , 6.1% for , and 7.7%
for . We conclude that the Activity Share inference tool is
accurate under all density conditions: In low density, a small
number of reports reflects overlapping transmission events, but
they impose tight constraints; in high density, the large report
diversity compensates for the looser constraints imposed by the
reports.
The influence of network density on the Activity Share is re-

visited by simulating larger topologies, and the results can be
found in [16].
Sensitivity to Traffic Load: Similarly to network density,

traffic load can also affect the accuracy of the Activity Share
estimation since it influences the overlapping transmissions
sensed by a node. The higher the traffic load, the larger is
the amount of overlapping transmissions, which challenge
the estimation of the Activity Share by enlarging the feasible
state space. In fact, as noted earlier, in case of overlapping

Fig. 5. Inference sensitivity to traffic load (testbed).

transmissions, several combinations of Activity Shares may
generate identical observations (i.e., node busy and transmis-
sion time shares). However, light traffic conditions increase
the free airtime observed by a node, which in turn weakens
the coordination attained by carrier sensing, by decoupling
the transmitting patterns of the nodes and leaving larger room
to randomness. We study the impact of traffic load on the
Activity Share inference tool by running the experiment on
a fixed topology with various traffic loads. Specifically, we
iterate scenario three times, fixing the traffic loads of all
nodes to 400 kb/s, 1.2 Mb/s, and 2 Mb/s (also in this case, each
experiment is repeated 10 times).
Fig. 5 depicts the cdf of the relative error of the Activity Share

estimation. As can be seen in the figure, the Activity Share in-
ference tool attains a very low relative error. Furthermore, the
variations among the three plots are minimal and are compa-
rable to the results attained for the fully backlogged case. In
particular, the mean relative error is 4.6%, 4.0%, 4.5% for 400
kb/s, 1.2 Mb/s, and 2 Mb/s, respectively.We conclude that even
though heavier traffic challenges the Activity Share inference
by increasing the amount of overlapping transmissions, while
lighter traffic increases randomness, the accuracy of our solu-
tion is largely independent of the traffic load of the nodes.
We defer the investigation of the sensitivity of the inference

tool to nonuniform traffic patterns over larger topologies to
the simulation section (see the paragraph “Robustness to Real
Traffic Distribution” in Section V-C).
Sensitivity to Report Interval Length: In the previous exper-

iments, we used report intervals of 10 s, i.e., each node sent
one report every 10 s including the busy and transmission time
shares and that measured during the same interval.
The report interval introduces tradeoffs of reporting overhead
(favoring long intervals), responsiveness to network changes
(favoring short intervals), and obtaining statistically significant
data (favoring long intervals). In order to clarify the last issue,
we notice that our entropy-based inference tool is most accu-
rate if the node reports reflect steady-state observations of the
underlying process, i.e., formed by the transmissions of all net-
work nodes (see Section III). As the report intervals shorten,
the actual realizations of the process during each interval may
largely depart from the steady state, thus degrading the infer-
ence accuracy. We assess how short report intervals affect the
performance of the inference tool by measuring the accuracy
in the scenario for various report interval lengths, varying
from 20 s to as low as 100 ms, for fully backlogged traffic.
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Fig. 6. Inference sensitivity to short report intervals (testbed).

The experiments show that the inference tool is accurate also
for short report intervals (Fig. 6). In particular, as the report in-
terval decreases from 20 s to 500 ms, the accuracy decrease is
minimal. When the report interval is further reduced and is set
up to (as small as) 100 ms, i.e., the reported values are based
on approximately 20 packets sent by each node, the accuracy
declines. The mean errors are 4.1%, 7.6%, 10.2%, and 29% for
the cases of 20 s, 2 s, 500 ms, and 100 ms, respectively.We con-
clude that in order to better capture the network dynamics, the
network manager can adapt the duration of the report intervals,
with a small penalty on inference accuracy.Note that since each
report includes only two entries, the overhead is minimal. For
example, in our implementation, the reports include only
two floating point values for a total of 16 B, i.e., they easily
fit within a single packet and can be aggregated or even piggy-
backed in regular traffic.
Throughput Prediction Accuracy With Heterogeneous

Concurrent Load: We evaluate the accuracy of the model
in Section IV by comparing its predictions with testbed
experiments in the topology with single-hop flows

. For each set of exper-
iments, we consider a target underserved link whose traffic is
fully backlogged, and we perform a baseline run, measuring the
throughput of the target link when all others transmit at a rate
randomly chosen in the [400 kb/s, 900 kb/s] interval. At the
end of the baseline run, we collect the node reports, infer the
Activity Share, and predict the throughput increase of the target
link obtained by rate-limiting any of the four conflicting nodes
of a fixed quantity (400 kb/s). Then, we perform four additional
runs on the testbed (one per conflicting node), alternately
rate-limiting a different conflicting node for the same 400-kb/s
quantity, and we record the actual throughput gain of the target
link. Finally, we compare the actual throughput gain obtained
in the testbed with the throughput gain predicted by our model.
Fig. 7 shows the cdf of the relative error for all possible target

link/conflicting node pairs for 10 repetitions of our scenario
(200 predictions in total). The long tail of the distribution is due
to few combinations for which the actual gain is very small (on
the order of a few kilobits per second); in those cases, even an
error of few packets is decisive in relative terms. In terms of
the absolute error, the predicted throughput gain is on average
less than 73 kb/s different from the actual throughput gain (i.e.,
about 18% of the rate-limiting value of 400 kb/s, or 26% of
the average actual throughput gain of approximately 280 kb/s),
with the per-link error being kb/s (sorted in
the alphabetical order of the sender). We conclude that, despite

Fig. 7. Throughput increase estimation for concurrent nodes with loads in
[400 kb/s, 900 kb/s] (testbed).

Fig. 8. Activity share: simulation versus testbed.

rate-limiting, different conflicting nodes can have largely dif-
ferent impacts on the throughput of an underserved link, and our
prediction tool adequately captures the heterogeneous effects.

C. Simulation Results—Inference Tool

In order to evaluate the inference tool on various topolo-
gies including a larger number of nodes, we performed an ex-
tensive set of ns-2 simulations following the inference experi-
mental methodology adopted in the previous section. In this sec-
tion, we first compare testbed and simulation. Then, we evaluate
the accuracy loss due to the state space reduction discussed in
Section III-D; all the results in the remainder of this paper im-
plement such enhancement. We also investigate the robustness
of the inference technique to realistic traffic conditions and re-
port losses.
Simulation Settings: We consider scenarios where each

node generates 1000-B UDP packets directed toward a single
neighbor, with constant interpacket time. The traffic is gener-
ated for 100 s at a fixed rate. We use the FreeSpace propagation
model, with node transmission and interference ranges equal to
210 m. We generate scenarios with a certain network density
(i.e., where each node has on average a predetermined number
of neighbors) by deploying the nodes in random positions and
scaling the size of the deployment area. Except for the experi-
ment in Fig. 8, which is obtained using 802.11a at 6 Mb/s, all
results in this section are obtained using 802.11b at 11 Mb/s
data rate in order to experiment with different conditions. We
refer to the analogous simulation results obtained for 802.11a
at 6 Mb/s as needed.
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Fig. 9. Inference with protocol-based reduction.

Comparison Between Testbed and Simulations: The simu-
lations introduce simplifications about actual channel propaga-
tion and abstract operational details, such as the WARP board’s
packet processing time. For this reason, our first experiment
compares the simulations and testbed results. We consider the
topologies and used in the testbed section and fully
backlogged nodes. Using the omniscient centralized approach,
we extract the Activity Share from the traces of simulation and
testbed, and we compare them. Fig. 8 shows the actual Activity
Share ( -axis) for all 32 possible states ( -axis) sorted similarly
to Fig. 3.7 The plots show an excellent agreement between the
two environments; the small discrepancies are due to nonideal
packet processing times and carrier-sensing relationships in the
testbed.
Effect of the Protocol-Based State Space Reduction: The next

experiment evaluates the effect of the protocol-based reduction
discussed in Section III-D. As remarked therein, the reduction of
the state space improves the computational performance of our
inference tool by decreasing the size of the feasible solution do-
main. However, the exclusion from the domain of the states in-
cluding neighboring transmissions introduces an inconsistency
between the domain and the measurement reports. In fact, the
excluded states likely occurred, even if for relatively short du-
rations, during each report interval and thus influence the re-
ports input to the inference tool. However, the protocol-based
state-space reduction ignores those states in the construction of
the feasible solution domain. In order to assess how this approx-
imation affects the accuracy of the inference tool, we generate a
random topology of 10 nodes, with an average number of seven
neighbors per node, andwe compare the Activity Share obtained
using the reduced (labeled “Protocol-based Reduction”) and the
entire state spaces (labeled “Power Set”).
Fig. 9 shows the scatterplot of the Activity Share. The -axis

is the actual value of the Activity Share, while the -axis is
the estimated value; each mark represents a single state. As ex-
pected, the solution including the power set is more accurate
(crosses are closer to the line than circles). The concentration of
circles on the -axis close to the origin are due to the states in-
cluding adjacent nodes transmitting, which the protocol-based
reduction excludes. Note that the actual Activity Share values
of those states are not significantly larger than 0, as the simul-
taneous transmissions of neighboring nodes are relatively un-
likely. The power set solution benefits from accounting for the
unlikely states, not only in the prediction of the Activity Share

7Note that for scenario S1, the actual node mapping is immaterial.

Fig. 10. Inference robustness to missing reports.

of those states, but also of states including only independent sets
of transmitters. We conclude that the accuracy of the inference
tool is higher when considering the entire state space since the
solution domain of the protocol-based state reduction ignores
states that contributed to the reported measurements.
Robustness to Incomplete Information: In the case of severe

network congestion, some of the reports could be lost. As the
number of report losses increases, the accuracy of the inference
tool is expected to decrease because of the less constrained, and
thus larger, feasible solution domain including the actual Ac-
tivity Share. A larger solution domain entails a higher uncer-
tainty in the search of the actual Activity Share since all solu-
tions within the domain may have occurred (see Section III-C).
We evaluate how report losses affect the accuracy of the infer-
ence tool by simulating the loss of up to five out of the 10 re-
ports transmitted in 10-node networks, with densities of 3, 5,
and 7 (i.e., where each node has on average 3, 5, and 7 neigh-
bors, respectively). Fig. 10 shows the mean relative error of the
Activity Share inference computed out of all possible states ob-
tained from 30 random topologies, where we evaluate the lack
of all possible combinations of missing reports (bars indicate
85th percentiles). We observe that the performance gracefully
degrades as the number of missing reports increases. This is be-
cause the reports of neighboring nodes are related: For instance,
part of the busy time of neighboring nodes is generated by trans-
missions of common neighbors.We conclude that our inference
technique is robust to report losses due to inherent redundancy
of node reports.
Robustness to Real Traffic Distribution: In our previous ex-

periments, all traffic sources generate packets according to pre-
defined interpacket distributions. In this experiment, we inves-
tigate how critical this assumption may be for our inference
technique to operate in real traffic scenarios. In order to repro-
duce real traffic, we replay actual traffic traces collected within
UCSD Jigsaw project [6] in our simulation environment. In par-
ticular, we randomly select 10 nodes from the UCSD traces, and
we play 10 s of their traffic on a network topology obtained as
follows. Two nodes are considered disconnected if the replayed
traces include five overlapping transmissions of data packets
from the two nodes (in order to safely consider synchronization
errors and simultaneous neighbor transmission events, we con-
sider an overlapping valid only if its duration exceeds 100 s);
otherwise, the two nodes are considered connected. Each simu-
lated node generates packets according to the transmission times
of the UCSD node it represents in the trace. Fig. 11 shows a
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Fig. 11. Inference robustness to realistic traffic.

scatterplot of the measured Activity Share versus the inferred
Activity Share for 10 repetitions of the experiment, with traffic
from 10 different time intervals. Note that in order to visually
capture a large range of Activity Share values, we plot both axes
in logarithmic scale; for this reason, for small values of the Ac-
tivity Share, the error is visually magnified, although it is only
a few percent. The plot shows that also in these real traffic con-
ditions, our inference technique achieves very accurate results.
Quantitatively, the mean relative error is about 3%.We conclude
that our inference technique is robust to real traffic conditions,
i.e., it is accurate also in case the traffic is not generated ac-
cording to a predefined distribution.
Comparison to an Exponential Inference Technique: In

order to provide a comparison of our inference technique to
an alternative baseline method, we design an Exponential
Inference Technique based on the assumption that the time
duration the system remains in any network state is expo-
nentially distributed. This permits us to model the temporal
evolution of the system, by using a continuous-time Markov
chain [9]; notice that this modeling technique is common to
several related works [3], [10], [23]. From any state , the
system transitions to the state with rate , where
is the transmission rate of in state ; the system transitions
to the state with rate , where is the termination
rate of in state . Specifically, for the states for which

is an independent set, is equal to the transmission
rate of , once normalized over the duration of the states in
which can transmit because it senses the medium idle (i.e.,

), for the other states; for the states for
which , is the reciprocal of the duration of a data
packet transmission, for the other states. For fairness
of comparison, differently from all related works, we directly
measure the input parameters from the operational network.8

We compare MIDAS to the exponential inference solution for
topologies of 10 nodes, where each node has on average five
neighbors and transmits fully backlogged traffic. Fig. 12 shows
the scatterplot of all the predictions obtained for 10 scenario
repetitions, where X’s denote MIDAS predictions, while O’s
denote the exponential modeling solution. The figure shows
that MIDAS largely outperforms the alternative, and the mean
relative error is 9% versus 36%.We conclude that a simplifying
exponential assumption does not adequately characterize the
real system behavior and does not permit to design a technique
to accurately infer the Activity Share.

8Of course, we do not use such inputs in MIDAS (see Section II-B).

Fig. 12. Comparison to an exponential inference method.

Fig. 13. Throughput increase estimation for scenarios with density 3.

D. Simulation Results—Throughput Prediction Tool

We investigate the performance of the prediction tool with
ns-2 simulations with the same experimental methodology used
to evaluate the throughput prediction accuracy in Section V-B.
We start by runningMIDAS on a 10-node random topologywith
density 3. Node transmission rates are set to 600 kb/s. As in the
experimental case, we pick one target underserved link, increase
its load until it is fully backlogged, and successively repeat the
experiment, rate-limiting each time a different conflicting flow
by 400 kb/s; we iterate this procedure for all links in the network.
The scatterplot in Fig. 13 compares the predicted throughput
gain with the actual throughput increase collected for 10 dif-
ferent random topologies. The -axis index identifies the actual
throughput increase for a saturated link by rate-limiting one of
its conflicting nodes, while the -axis represents the predicted
value for the same rate-limiting action, e.g., a point on the di-
agonal represents a perfect match between the actual and the
predicted throughput gain of the tagged link; points above and
below the diagonal represent an overestimate and an underes-
timate of the predicted over the actual throughput gain of the
tagged link, respectively. The graph shows an excellent agree-
ment between the prediction and the simulation. It is a notable
finding that by rate-limiting different conflicting nodes of the
same fixed amount, the throughput increase of the target link can
range from 7% to 172% of the rate-limited quantity 400 kb/s,
i.e., from 28 to 688 kb/s. In the remainder of this section, we
evaluate how the prediction accuracy depends on network den-
sity and traffic load.
Sensitivity to Network Density: As previously shown, net-

work density influences the accuracy of the Activity Share
inference, which is the basis of throughput prediction (see
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Fig. 14. Throughput prediction sensitivity to density (600 kb/s).

Section V-B, [16], and [17]). In addition, network density
determines the number of neighbors and neighbor’s neighbors
(potentially hidden terminals) that respectively affect the link
busy time and collision probability, which in turn are key to our
prediction tool. We investigate these effects by evaluating our
predictions for all possible target link/conflicting node pairs
in 10 topologies with 10 nodes and densities of 3, 5, and 7,
with node transmission rates of 600 kb/s. Fig. 14 shows the
empirical cdf of the relative error between the predicted and
actual throughput increase. The plot for density 3 (i.e., for
topologies with three neighbors per node) is the most accurate,
while the case for density 5 is the least; the average relative
errors are 17%, 26%, 22% for densities 3, 5, and 7, respectively.
Surprisingly, the accuracy in throughput prediction does not
exactly reflect the accuracy in the inference of the Activity
Share (we checked that the trends in [16, Fig. 8] were respected
also in this set of scenarios). The main reason is that our model
is more accurate in the computation of the fraction of busy
time than of the collision probability since the former imposes
less stringent assumptions (see Section IV-B), e.g., our model
ignores collisions with terminals in carrier-sensing range,
whose incidence grows with the density of the scenarios. Thus,
the case of density 3, where the number of hidden terminals
is restricted by the degree of the receiver, is most accurate.
In terms of the absolute error, i.e., the difference between the
actual throughput gain and the predicted gain, the predicted
throughput gain is within 80 kb/s (i.e., 20% of the rate-limiting
value of 400 kb/s) from the actual throughput gain in 83%–92%
of the cases. We conclude that the accuracy of the prediction
model increases as the number of hidden terminals decreases
because of the less stringent assumptions we impose on the
computation of the fraction of busy time of the underserved
link.
Sensitivity to Traffic Load: In this experiment, we investi-

gate the effect of traffic load on the accuracy of our predictions
by repeating the simulations above for node transmission rates
of 900 kb/s. Fig. 15 shows the same ranking among the curves
relative to different densities as for the case of 600 kb/s. How-
ever, the accuracy obtained for 600 kb/s is higher than for 900
kb/s. This is due to two reasons. First, the Activity Share in-
ference technique based on the protocol state-space reduction
is more accurate for lower traffic loads (see [17]). Second, in
terms of the relative error, the prediction of small throughput
gains is more challenging than the prediction of large gains. As
the neighbor load increases, rate-limiting actions produce on av-
erage a lower benefit for the underserved link, thus increasing

Fig. 15. Throughput prediction sensitivity to density (900 kb/s).

the influence of the less accurate results for lower gains on the
cdf. For example, for density 5 and 600 kb/s, on average the un-
derserved link gains 60% of the rate-limiting amount (i.e., 240
out of 400 kb/s in this experiment), while for the case of den-
sity 5 and 900 kb/s, the underserved link gains 40% (i.e., 160
out of 400 kb/s). This explains why the relative error is larger
for 900 kb/s than for 600 kb/s.

VI. RELATED WORK

Wireless Network Monitoring: Performance monitoring
of single-hop WLANs has recently attracted research in-
terest [6], [18]. The proposed approaches reconstruct a global
trace of all network packet transmissions by combining offline
detailed traces reported by sniffers spread throughout the
network. These solutions can provide a comprehensive survey
of the network activity. However, they require the delivery of
detailed traces from all (or at least most of) the nodes, which
severely hinders the normal operations of multihop wireless
networks. In our work, we show that we can attain very accurate
results with the use of small time-averaged reports. Further-
more, [6] and [18] do not address the problem of identifying
the origins of poor link performance and rate-limiting the most
hindering nodes.
802.11 Throughput Models: Several 802.11 throughput pre-

dictionmodels have been proposed in the literature [3], [5], [10],
[12], [13], [19], [23], [25]. Their goal is either to compute the
throughput of the network links given their traffic demands or
to compute the feasible region of the network. In contrast, we
use measurements to infer the network behavior, particularly
the coordination between node transmissions and the causes of
poorly performing links, and use this understanding to improve
the throughput of underserved links. Our scheme relies on active
offline link profiling, such as [13] and [23], to identify the car-
rier-sensing and interference relationships between the nodes.
In addition, we introduce passive online measurements during
normal network operations to capture the complex node interac-
tions determined by the actual transmission patterns. Recently,
[14] and [24] propose methods to avoid active offline profiling:
[24] uses low overhead online probes; [14] uses passive online
estimations using traces collected by deployed sniffers. While
[14] and [24] only consider pairwise link interference and do
not characterize the coordination between conflicting nodes, we
can leverage the results therein for online link profiling.
Alternative Mitigation Techniques: Network managers

have a number of options to optimize the performance of
underserved links other than rate-limiting conflicting links.
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Alternative mitigation techniques have been suggested in
literature, e.g., channel selection [15], association control [2],
transmit power control [20], and channel width adaptation [21].
We remark that they are orthogonal to our inference technique
and can benefit from it.

VII. CONCLUSION

In this paper, we present a management framework for wire-
less networks called MIDAS. MIDAS addresses the problem of
identifying the conflicting nodes that cause underperformance
of a target link. We introduce the key concept of Activity Share
that captures the coordination among the conflicting nodes.
Since the Activity Share cannot be locally measured by the
nodes, we show how MIDAS infers it using time-aggregate,
passively collected measurements reported by the nodes. Fi-
nally, we design a throughput model based on the Activity
Share that MIDAS utilizes to predict the benefit of rate-lim-
iting conflicting transmissions. Our results show that MIDAS
infers the Activity Share with a mean relative error as low as
4% and predicts the throughput gain of an underserved link
corresponding to alternative rate-limiting actions with an error
lower than 20% of the rate-limited quantity.

ACKNOWLEDGMENT

The authors are grateful to J. Kruys and S. Pandey for in-
sightful comments and feedback on the project.

REFERENCES
[1] Rice University, Houston, TX, “Rice University WARP project,” [On-

line]. Available: http://warp.rice.edu
[2] Y. Bejerano, S. J. Han, and L. Li, “Fairness and load balancing in wire-

less LANs using association control,” in Proc. ACM MobiCom, Sep.
2004, pp. 315–329.

[3] R. R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin,
“Throughput analysis in multihop CSMA packet networks,” IEEE
Trans. Commun., vol. 35, no. 3, pp. 267–274, Mar. 1987.

[4] J. Camp, V. Mancuso, O. Gurewitz, and E. Knightly, “A measurement
study of multiplicative overhead effects in wireless networks,” in Proc.
IEEE INFOCOM, Apr. 2008, pp. 1633–1641.

[5] M. Carvalho and J. Garcia-Luna-Aceves, “A scalable model for
channel access protocols in multihop ad hoc networks,” in Proc. ACM
MobiCom, Sep. 2004, pp. 330–344.

[6] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and
S. Savage, “Jigsaw: Solving the puzzle of enterprise 802.11 analysis,”
in Proc. ACM SIGCOMM, Sep. 2006, pp. 39–50.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[8] R. Diestel, Graph Theory (Graduate Texts in Mathematics). New
York: Springer, 2005.

[9] R. Gallager, Discrete Stochastic Processes. Norwell, MA: Kluwer,
1990.

[10] M. Garetto, T. Salonidis, and E. W. Knightly, “Modeling per-flow
throughput and capturing starvation in CSMA multi-hop wireless net-
works,” in Proc. IEEE INFOCOM, Apr. 2006, pp. 1–13.

[11] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interfer-
ence on multi-hop wireless network performance,” in Proc. ACM Mo-
biCom, Sep. 2003, pp. 66–80.

[12] A. Jindal and K. Psounis, “Characterizing the achievable rate region
of wireless multi-hop networks with 802.11 scheduling,” IEEE/ACM
Trans. Netw., vol. 18, no. 3, pp. 257–281, Mar. 2009.

[13] A. Kashyap, S. Ganguly, and S. R. Das, “A measurement-based ap-
proach to modeling link capacity in 802.11-based wireless networks,”
in Proc. ACM MobiCom, Sep. 2007, pp. 242–253.

[14] A. Kashyap, U. Paul, and S. R. Das, “Deconstructing interference re-
lations in WiFi networks,” in Proc. IEEE SECON, Jun. 2010, pp. 1–9.

[15] B. Kauffman, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,
and C. Diot, “Measurement-based self organization of interfering
802.11 wireless access networks,” in Proc. IEEE INFOCOM, May
2007, pp. 1451–1459.

[16] E. Magistretti, O. Gurewitz, and E. W. Knightly, “Inferring and miti-
gating hindering transmissions in managed 802.11 wireless networks,”
in Proc. ACM MobiCom, Sep. 2010, pp. 305–316.

[17] E. Magistretti, O. Gurewitz, and E. W. Knightly, “Inferring and mit-
igating a link’s hindering transmissions in managed 802.11 wireless
networks,” Rice Univ., Houston, TX, Tech. Rep., 2010 [Online]. Avail-
able: http://networks.rice.edu/papers/inference-paper.pdf

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing the
MAC-level behavior of wireless networks in the wild,” in Proc. ACM
SIGCOMM, Sep. 2006, pp. 75–86.

[19] K. Medepalli and F. Tobagi, “Towards performance modeling of IEEE
802.11 based wireless networks: A unified framework and its applica-
tions,” in Proc. IEEE INFOCOM, Apr. 2006, pp. 1–12.

[20] V. Mhatre, K. Papagiannaki, and F. Baccelli, “Interference mitigation
through power control in high density 802.11 WLANs,” in Proc. IEEE
INFOCOM, May 2007, pp. 535–543.

[21] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan,
“Load-aware spectrum distribution in wireless LANs,” in Proc. IEEE
ICNP, Oct. 2008, pp. 137–146.

[22] D. Niculescu, “Interference map for 802.11 networks,” in Proc. ACM
IMC, Oct. 2007, pp. 339–350.

[23] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A general
model of wireless interference,” in Proc. ACM MobiCom, Sep. 2007,
pp. 171–182.

[24] T. Salonidis, G. Sotiropoulos, R. Guerin, and R. Govindan, “Online
optimization of 802.11 mesh networks,” in Proc. ACM CoNext, Dec.
2009, pp. 61–72.

[25] X. Wang and K. Kar, “Throughput modelling and fairness issues in
CSMA/CA based ad-hoc networks,” in Proc. IEEE INFOCOM, Mar.
2005, pp. 23–34.

Eugenio Magistretti (S’04) received the Laurea and
Doctorate degrees in computer engineering from
the University of Bologna, Bologna, Italy, in 2003
and 2007, respectively, and is currently pursuing the
Ph.D. degree in electrical and computer engineering
at Rice University, Houston, TX.
His main research interests are in the area of wire-

less MAC protocols, with a focus on design, perfor-
mance modeling, and evaluation.

Omer Gurewitz (S’00–M’05) received the B.Sc.
degree in physics from Ben Gurion University,
Beer Sheva, Israel, in 1991, and the M.Sc. and
Ph.D. degrees in electrical engineering from the
Technion—Israel Institute of Technology, Haifa, in
2000 and 2005, respectively.
He is an Assistant Professor with the Department

of Communication Systems Engineering, Ben Gu-
rion University. Between 2005 and 2007, he was
a Post-doctoral Researcher with the Electrical and
Computer Engineering Department, Rice University,

Houston, TX. His research interests are in the field of performance evaluation
of wired and wireless communication networks. His current projects include
cross-layer design and implementation of medium access protocols for 802.11
as well as 802.16 (WiMAX) standards.

Edward W. Knightly (S’91–M’96–SM’04–F’09)
received the B.S. degree from Auburn University,
Auburn, AL, in 1991, and theM.S. and Ph.D. degrees
from the University of California, Berkeley, in 1992
and 1996, respectively, all in electrical engineering.
He is a Professor of electrical and computer engi-

neering with Rice University, Houston, TX. His re-
search interests are in the areas of mobile and wire-
less networks and high-performance and denial-of-
service resilient protocol design.
Prof. Knightly is a Sloan Fellow. He served as As-

sociate Editor of numerous journals and special issues including the IEEE/ACM
TRANSACTIONS ON NETWORKING and IEEE JOURNAL ON SELECTED AREAS OF
COMMUNICATIONS Special Issue on Multi-Hop Wireless Mesh Networks. He
served as Technical Co-Chair of IEEE INFOCOM 2005 and General Chair of
ACMMobiHoc 2009 andACMMobiSys 2007, and served on the program com-
mittee for numerous networking conferences including ICNP, INFOCOM, Mo-
biCom, and SIGMETRICS. He is a recipient of the National Science Founda-
tion CAREER Award. He received the Best Paper Award from ACMMobiCom
2008.


