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Abstract—Accurate Channel State Information (CSI) is a key
requirement for massive MIMO to achieve multi-fold increases
in throughput and secrecy rate. Consequently, an adversary
targeting the channel sounding process has the potential to
significantly degrade performance. In this paper, we first present
and model the Pilot Distortion Attack, a simple but devastating
jamming strategy in which the adversary distorts the AP’s CSI
measurement of even a single client leading to denial-of-service
for all clients associated with the AP. We propose MACE as
a countermeasure that exploits the AP’s large antenna array
to detect jamming with zero startup cost and zero additional
network overhead. Our key insight is that with many antennas,
the AP’s variance estimator of client Carrier Frequency Offset
(CFO) will significantly increase when there are jamming signals
present. We build a testbed with a 72-antenna massive MIMO AP
and conduct the first experimental study of the Pilot Distortion
Attack. Our results show that a single-antenna adversary jam-
ming no more than 1/60 of the time and having no more transmit
power than any client can cause over 26% reduction of achievable
rate of all clients. Moreover, by setting a single threshold, MACE

can achieve 0.97 true positive at 0.01 false positive for various
client/adversary locations and for a wide range of SNR (5 ⇠ 35
dB) and SIR (�5 ⇠ 35 dB) with SNR�SIR�5 dB.

I. INTRODUCTION

Access Points (APs) employing massive MIMO provide
new opportunities to scale both throughput and secrecy rate.
However, similar to conventional multi-antenna networks such
as IEEE 802.11ac, the gain of massive MIMO depends criti-
cally on whether the AP can accurately estimate the Channel
State Information (CSI) of different clients [1], [2]. Current
methods of CSI estimation in massive MIMO networks require
clients to transmit pre-defined channel sounding pilots to the
AP, which enables the AP to measure the uplink CSI from
different clients. Downlink CSI can be obtained in the same
way by using channel reciprocity. Previous work has shown
that this channel sounding process is vulnerable to jamming
attacks: If an adversary transmits jamming signals during both
pilot transmission and the subsequent data transmission, net-
work throughput will collapse even when the AP has unlimited
antennas [3], [4]. The secrecy rate of clients also rapidly
decreases when there is jamming during channel sounding [5]–
[7].

In this paper, we analytically and experimentally study the
impact and detection of jamming during channel sounding
in practical massive MIMO networks. In particular, we first
present and model the Pilot Distortion Attack, a simple but
devastating jamming strategy that can lead to denial-of-service
of all clients associated with the AP. Different from previous

attacks in which the adversary is active during both channel
sounding and data transmission, pilot distortion attacks only
require the adversary to transmit jamming signals during
channel sounding, while keeping silent afterwards. We study
both non-protocol-specific jamming via Gaussian white noise
spread over the entire channel as well as protocol-specific
jamming, in which jamming signals have the same format
as client channel sounding pilots. We show that in practical
massive MIMO networks, the distorted CSI of even a single
client can thwart concurrent uplink MMSE reception at the
AP, thereby vastly degrading aggregate throughput.

As a counter mechanism, we propose MAssive MIMO
Carrier frequency offset Estimate (MACE), a system that
exploits variance scaling of Carrier Frequency Offset (CFO)
measurements in massive MIMO to detect jamming with
zero startup cost and zero additional network overhead. In
other words, MACE can detect jamming for even the first
packet received by the AP and is compatible with current
WiFi and LTE standards. A key insight of MACE is that
when there are no jamming signals, the CFO estimated by
different antennas at the AP are very close to each other,
because all estimates share the same true value and are also
based on signals in the same carriers. Thus, we develop
a model of the variance of CFO estimates and show that
without jamming, the normalized variance is independent of
the wireless channel, the signal SNR, and the CFO between
the AP and the client. In comparison, when there are jamming
signals, we show that even if they are sent in exactly the same
format as the channel sounding pilots, the normalized variance
estimator significantly increases. As this difference increases
with the size of the massive MIMO array, MACE can detect
jamming with zero startup cost, i.e., without a priori statistical
training. This further enables MACE to support highly mobile
clients, and prevents the adversary from escaping detection
by affecting statistical training. Moreover, because repeated
symbols already exist in various wireless standards for CFO
estimation, MACE does not introduce any additional network
overhead. MACE also does not require any shared secrets.
Consequently, after detection via MACE, the AP can use
different scheduling and beamforming algorithms to minimize
the impact of distorted CSI (e.g., exclude the distorted clients
for concurrent uplink transmission).

Furthermore, to prevent the adversary who is aware of the
MACE mechanism and may foil the detection by imitating
the client’s CFO when transmitting protocol-specific jamming
signals [8], we propose client-side Per-Frame Random CFO
Injection. In particular, before sending the channel sounding
pilots, each client will inject a random CFO in the digital

978-1-5386-0683-4/17/$31.00 c�2017 IEEE



domain. The range of this random CFO is computed by the
client, such that it does not lead to decoding error at the AP.
Moreover, by changing the random CFO per transmission, the
adversary cannot estimate its value.

Finally, we build a massive MIMO testbed to evaluate
the impact of pilot distortion attacks and the detection per-
formance of MACE. We are the first to experimentally study
massive MIMO from a security point of view. In particular,
we use WARP v3 [9] and the Argos massive MIMO AP [10],
[11] that has a 72-antenna array, and collect over 3,000,000
packet measurements in the 5 GHz WiFi band. Our main
experimental results can be summarized as follows:

(1) For the pilot distortion attack, a single adversary jam-
ming no more than 1/60 of the overall airtime and having no
more transmit power than any client can lead to 38% to 26%
reduction of achievable rate when 4 to 9 clients are grouped for
concurrent uplink transmission. In practice, the damage will be
even more severe, as limiting throughput reduction to 38% and
26% requires the clients to perfectly adapt their Modulation
and Coding Scheme (MCS) to the maximum achievable rate
given the attack properties. Otherwise, the attack can degrade
throughput to zero due to unrecoverable decoding errors.

(2) Because the variance of the normalized CFO estimates
is independent of the wireless channel and the signal SNR, by
setting a single detection threshold, MACE can achieve 0.97
true positive at 0.01 false positive for various client/adversary
locations, and for a wide range of SNR (5 ⇠ 35 dB) and SIR
(�5 ⇠ 35 dB) with SNR�SIR�5 dB.

(3) Even with only 16 antennas at the AP and 32 repeated
symbols, MACE can achieve 0.97 true positive at 0.03 false
positive with the same client/adversary locations and SNR/SIR
range; consequently, MACE can also be used for general-
purpose jamming detection, even with a moderate number of
antennas and repeated symbols (e.g., cyclic prefix of OFDM
symbol).

The rest of the paper is organized as follows. Sec. II
describes our threat model. We analyze pilot distortion attacks
in Sec. III and present our design of MACE in Sec. IV.
Experimental evaluations are studied in Sec. V. Sec. VI
discusses related work and Sec. VII concludes the paper.

II. THREAT MODEL

As shown in Fig. 1, we consider a threat model with a
WLAN setup ,which includes a massive MIMO AP (Alice)
that has M antennas, and K single-antenna clients (Bobs).
OFDM transmission is employed along with channel sounding
with time division to measure CSI between Alice and the K
different Bobs. That is, pre-defined channel sounding pilots are
transmitted from different Bobs to Alice in orthogonal time
slots (sending pilots from Alice to Bobs and feeding back
the CSI measurements is infeasible in massive MIMO [11]).
However, because there are no standards defining the channel
sounding pilots originated from clients, we use the signal
format of IEEE 802.11ac, where two identical Long Training
Sequences (LTS) are concatenated and broadcasted by Alice
for downlink CSI measurement. After Alice receives Bobs’
LTS and estimates Bobs’ CSI, linear beamforming algorithms
like ZF/MMSE are used for concurrent uplink/downlink trans-
missions. Recent developments have shown that ZF/MMSE
can be implemented for massive MIMO [12] and lead to
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Fig. 1. Threat model: A single-antenna malicious node Mallory distorts CSI
measurement of a legitimate client Bob by jamming his channel sounding.

higher throughput than conjugate beamforming [1], [11].
We further consider that there is a single-antenna malicious

node Mallory in range of Alice. Mallory is a reactive jammer
and can transmit jamming signals during channel sounding
(the timing of channel sounding can be estimated by overhear-
ing network control signals). In particular, we consider the
following two types of jamming signals: (1) Non-Protocol-
Specific Jamming: Mallory knows the carriers in which the
channel sounding pilots are transmitted, but is unaware of the
detailed protocol used by Alice and Bobs. In this case, Mallory
transmits white Gaussian noise in the carriers. (2) Protocol-
Specific Jamming: Mallory knows that each Bob transmits two
repeated LTS for CFO/CSI measurement, and is also able to
strictly time-synchronize with Bob [13]. Therefore, Mallory
can also send repeated jamming signals (in this paper we
consider the same repeated LTS as Bob) to distort Bob’s CSI
measurement at Alice.

III. PILOT DISTORTION ATTACKS

A multi-antenna AP can realize concurrent uplink and
downlink transmissions to multiple clients. However, with
a Pilot Distortion Attack, an adversary transmits jamming
signals during channel sounding, targeting that the distorted
CSI measurement at the AP, will result in large reduction of
network throughput. Not only is such an attack difficult to
detect due to its small energy and time footprint, it is also
powerful because distorting the CSI of a single Bob can lead
to denial-of-service for all Bobs associated with the AP.

Distorted CSI can have different influences on uplink
and downlink due to properties of beamforming algorithms.
Consider ZF beamforming: Denote the channel between an
M -antenna Alice and K single-antenna Bobs to be an M⇥K
matrix H . Thus the beamforming weights are computed by
W = (H⇤H)�1H⇤ (H⇤ is the conjugate transpose of H).
In the uplink, inter-client interference is removed by Alice
computing W · H , while in the downlink, interference is
removed by Alice computing HT ·WT (HT is the transpose of
H). As a result, if Mallory distorts the CSI of Bobi, which is
the ith column of H , only Bobi receives extra interference
in the downlink, while all clients but Bobi receive extra
interference in the uplink. In other words, by distorting the
CSI of a single Bob, all concurrent uplink transmission can be
thwarted. This also reduces downlink throughput for closed-
loop traffic (e.g., TCP) [14].

To further quantify the reduction of uplink throughput
when Bobi’s CSI is distorted, we denote the channel from
Bobi and Mallory to Alice to be H

Bi

⇠ CN(0, 1) and



H
Mal

⇠ CN(0, 1), respectively. During channel sounding,
Bobi’s sounding pilot is X

Bi,p

while Mallory’s jamming signal
is X

Mal,p

(|X
Bi,p

| = |X
Mal,p

| = 1). What Alice receives can
thus be written as
Y
i,p

=
p
P
Bi,p

H
Bi

X
Bi,p

+
p
P
Mal,p

H
Mal

X
Mal,p

+Z, (1)
where P

Bi,p

and P
Mal,p

are the signal strength of Bobi and
Mallory at Alice during channel sounding, respectively. Z is
random noise with strength N . Here we assume that Bobi
only transmits the channel sounding pilot once without loss
of generality. When Bobi transmits repeated channel sounding
pilots, P

Mal,p

will become the effective jamming strength and
have different values for protocol-specific and non-protocol-
specific jamming. N will also become the effective noise
strength. The MMSE estimate of H

Bi

given Y
i,p

is

Ĥ
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, (2)

with error ✏
Bi

= H
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� Ĥ
Bi

being Gaussian with variance
�2
✏Bi

I and

�2
✏Bi
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P
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P
Bi,p

+ P
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+N
. (3)

During concurrent uplink transmission, we denote W
j

to be the beamforming weights of Bobj (j 6= i). Mallory
keeps silent during data transmission. Therefore, after receive
beamforming, Alice obtains

Y
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j
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j
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⌘
X
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j

Z,

(4)

where P
Bk,d

is the signal strength of Bobk at Alice during
data transmission, and |X

Bk,d

| = 1, 8k. It can be observed
in Eq. (4) that, due to Bobi’s distorted CSI, extra interference
to Bobj can be computed as W

j

p
P
Bi,d

✏
Bi

X
Bi,d

. For MMSE
estimate, ✏

Bi

is independent of Ĥ
Bi

and thereby the computed
beamforming weights W

j

. Therefore, the expected strength of
the extra interference with normalized W

j

is

E{|W
j

p
P
Bi,d

✏
Bi

X
Bi,d

|2} =
(P

Mal,p

+N)P
Bi,d

P
Bi,p

+ P
Mal,p

+N
. (5)

Two observations can be obtained from Eq. (5). First,
the extra interference does not decrease when Alice has an
increasing number of antennas. However, because of the beam-
forming gain, when Alice has more antennas, Bobj’s signal
strength after receive beamforming increases. This makes the
impact of the extra interference diminish when Alice’s antenna
number tends to infinity. Nonetheless, for practical massive
MIMO networks, Alice’s antenna number is limited. It is
shown in Sec. V-B that even if Mallory has no more transmit
power than any Bob, pilot distortion attack can still lead
to 38% to 26% reduction of per-client achievable rate for
concurrent uplink transmission of 4 to 9 Bobs.

Second, if the noise strength N is ignored in Eq. (5), we
can further compute that the pilot distortion attack is � times
more efficient than attacks with the same strength P

Mal,p

but
directly jamming the data transmission, where

� = � · P
Bi,d

P
Bi,p

+ P
Mal,p

. (6)

Here � is the ratio of duration of data transmission over

channel sounding. For 20 MHz bandwidth and 2 LTS as
channel sounding pilots, each Bob’s channel sounding takes
8µs (including cyclic prefix of the LTS). In comparison, data
transmission can be extended within channel coherence time
that ranges from 500µs to more than 1ms [11]. This leads to
a � no smaller than 60. Consequently, if Mallory has similar
power to Bobi, pilot distortion attack will be over 30 times
more efficient than directly jamming the data transmission. In
other words, the pilot distortion attack has high efficiency with
small energy and time footprint.

IV. JAMMING DETECTION WITH MACE

In this section, we present MACE, a system that can detect
jamming with zero startup cost and zero additional network
overhead. We introduce the background of CFO estimation,
present the architecture of MACE, and analyze the variance of
CFO estimates without and with jamming signals, respectively.
We further study the countermeasure of per-frame random
CFO injection.

A. CFO Estimation with a Single Receiving Antenna
CFO commonly exists due to hardware discrepancies be-

tween the transmitter and the receiver, and it needs to be
estimated and corrected in the early stage of the decoding
chain. In current wireless networks, CFO is estimated through
repeated training sequences. If we denote Y = {Y1|Y2} to be
the signals at the receiver (Y1 and Y2 are the first and the
second half of Y , respectively), we can obtain

Y1 = R+ Z1,

Y2 = Rej✓ + Z2,
(7)

where R is the received copy of the training sequence, Z1 and
Z2 are random noise with strength N , and ✓ = 2⇡ft · len(R)
is the phase rotation due to CFO f and sampling interval t. We
define len(·) as the function that returns the length a vector.

The Maximum Likelihood (ML) estimate of ✓ given Y1

and Y2 was derived by Moose in [15], which computes

✓̂ = arg(Y2Y
⇤
1 ). (8)

It was also computed that in high SNR regime,

E{✓̂|✓, R} = ✓,

V ar{✓̂|✓, R} = N/(RR⇤).
(9)

B. System Architecture of MACE
The architecture of MACE is illustrated in Fig. 2. MACE

employs the CFO estimates of Alice’s many antennas to detect
jamming signals, because the existence of jamming signals
will rapidly increase the variance of CFO estimates, thus en-
abling detection (since MACE targets jamming detection, this
is not the optimal CFO estimation for packet decoding). Since
CFO estimation is supported by various wireless standards,
MACE does not introduce any additional network overhead.

As a stand alone module at Alice, there are four steps of
computation after MACE receives the raw signals from each
Bob and before it determines whether jamming signals are
present. The four steps are summarized as follows:

(1) SNR Estimation. MACE first measures the SNR of
each antenna. Particularly, the noise strength is measured when
there are no incoming signals.
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Fig. 2. System architecture of MACE: the variance of CFO estimates at Alice greatly increases with jamming signals, which is used by MACE for detection.

(2) CFO Estimation. Subsequently, the repeated symbols
received by each antenna are used to compute a CFO estimate.
We employ the ML estimator discussed in Sec. IV-A.

(3) CFO Normalization. MACE then computes the av-
erage of these M CFO estimates, and normalizes each CFO
estimate by subtracting the average and scaling with the cor-
responding SNR. Without jamming signals, each normalized
CFO estimate can be approximated by a standard Gaussian
random variable. The details are discussed in Sec. IV-C.

(4) Jamming Detection. Finally, MACE computes the
variance of these normalized CFO estimates, which is close
to 1 without jamming, but much larger than 1 with jamming.
Therefore, a threshold can be set for jamming detection. The
details are discussed in Sec. IV-C and Sec. IV-D.
C. Variance of CFO Estimates without Jamming

Because the multiple CFO estimates at Alice share the
same true value and are also based on signals in the same
carriers, when there is no jamming, the variance of these
CFO estimates should be small (in high SNR regime). In the
following, we derive an analytical form of this variance.

When Alice has M antennas, we denote the multiple CFO
estimates to be {✓̂1, ✓̂2, . . . , ✓̂M}. Therefore, we can compute
the average as � = 1

M

P
M

i=1 ✓̂i, and the variance as s =
1
M

P
M

i=1(✓̂i � �)2. However, it can be observed that, without
the knowledge of the distribution of each ✓̂

i

, the statistics of
s can hardly be computed. Therefore, we further make the
following 2 assumptions about the CFO estimates at Alice: (i)
Normal Distribution. Given ✓ and R

i

(which is the the training
sequence received by Alice’s ith antenna), ✓̂

i

is a Gaussian
random variable with average ✓ and variance N

i

/(R
i

R⇤
i

). (ii)
Uncorrelated Noises. We assume that the random noises are
uncorrelated among Alice’s different antennas. Therefore, ✓̂

i

is uncorrelated with ✓̂
j

if i 6= j.
With the assumption of uncorrelated noises, we can first

compute the statistics of the average �, which are

E{�|✓, R1, . . . , RM

} = 1
M

P
M

i=1 E{✓̂
i

|✓, R
i

} = ✓,

V ar{�|✓, R1, . . . , RM

} = 1
M

2

P
M

i=1 V ar{✓̂
i

|✓, R
i

}.
(10)

Therefore, � is a conditionally unbiased estimate of ✓, which
also has a small conditional variance (due to the 1/M2 factor)
when Alice has many antennas. Consequently, we can use �
to approximate the true CFO ✓. This allows us, together with
the assumption of normal distribution, to normalize each CFO
estimate ✓̂

i

into a standard Gaussian random variable ✓̂0
i

by

✓̂0
i

=
✓̂
i

� �q
V ar{✓̂

i

|✓, R
i

}
= (✓̂

i

� �)

r
S
i

N
i

· len(R
i

), (11)

where S
i

and N
i

are the signal and noise strength measured
by Alice’s ith antenna, respectively. Moreover, it is known
that the summation of the square of M standard Gaussian
random variables is subjected to chi-squared distribution with
M degrees of freedom. Therefore, if we denote s0 to be
the variance of these M normalized CFO estimates, we can
compute that

E{s0|✓, R1, . . . , RM

} = 1,

V ar{s0|✓, R1, . . . , RM

} = 2/M.
(12)

It can be observed in Eq. (12) that, when Alice has more
antennas, s0 becomes increasingly concentrated around 1. This
makes it possible to set a threshold to separate those channel
sounding pilots without jamming signals. Furthermore, the
conditional statistics of s0 is independent of the wireless
channel, the signal SNR (as long as in high SNR regime),
and the CFO between Alice and Bob. This is the main reason
why MACE can detect jamming with zero startup cost.

D. Variance of CFO Estimates with Jamming
CFO estimate at each Alice’s antenna becomes less ac-

curate in the presence of jamming signals. As a result, the
variance of CFO estimates increases, which makes s0 larger
than 1. In the following, we characterize s0 for both non-
protocol-specific and protocol-specific jamming.

Non-Protocol-Specific Jamming. Since Mallory transmits
white Gaussian noise during channel sounding, if the signal
SINR at Alice is not very small, according to Eq. (9), ✓̂

i

should
have conditional variance (N

i

+ J
i

)/(S
i

· len(R
i

)), where J
i

is the jamming signal strength at Alice’s ith antenna. As a
result, the correct normalization of ✓̂

i

should be

✓̂0
i

= (✓̂
i

� �)

r
S
i

N
i

+ J
i

· len(R
i

). (13)

However, Alice does not know the existence of jamming
signals, and thereby treats S

i

+ J
i

as the legitimate signal
strength. If we assume that the average � keeps unchanged,
Alice will now mistakenly compute

✓̂
0(err)
i

= (✓̂
i

� �)

r
S
i

+ J
i

N
i

· len(R
i

). (14)

Therefore, as long as J
i

> N
i

, we can obtain

✓̂
0(err)
i

✓̂0
i

=

r
1 +

S
i

J
i

+ J
i

J
i

+ J
i

N
i

S
i

N
i

> 1. (15)

Consequently, the variance of ✓̂0(err)
i

also increases.
Protocol-Specific Jamming. When Mallory uses protocol-

specific jamming, the jamming signals received by Alice’s ith
antenna can be written as {Q

i

|Q
i

ej⌘}, where ⌘ is the phase



rotation due to CFO between Alice and Mallory. Similarly,
because Alice is not aware of the jamming signals, she uses
Eq. (8) to compute a mistaken CFO estimate ✓̂

(err)
i

, which
has conditional average

E{✓̂(err)
i

|✓, R
i

, ⌘, Q
i

}
= arg

�
(R
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ej✓ +Q
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+Q
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= arg
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ej✓(|R

i

|2 +R
i

Q⇤
i

) + ej⌘(|Q
i

|2 +Q
i

R⇤
i

)
�
.
(16)

While ✓ and ⌘ are fixed for all of Alice’s M antennas, R
i

and Q
i

will be different. However, because Alice is a massive
MIMO AP, Mallory can hardly estimate or control the channel
between Alice and herself or the channel between Alice and
Bob, and thereby the values of R

i

and Q
i

. Consequently, the
only parameter in Eq. (16) that Mallory can control is ⌘. And
as long as ✓ 6= ⌘, the conditional average of ✓̂

(err)
i

will no
longer be the same for Alice’s different antennas.

In addition, we can also compute the conditional variance
of ✓̂

(err)
i

when there are protocol-specific jamming signals,
which is

V ar{✓̂(err)
i

|✓, R
i

, ⌘, Q
i

} =
N

i

(R
i

+Q
i

)(R⇤
i

+Q⇤
i

)
. (17)

Combining Eq. (16) and Eq. (17), it can be observed that
when Alice normalizes ✓̂

(err)
i

to ✓̂
0(err)
i

by using Eq. (11),
each ✓̂

0(err)
i

will have unit variance but non-zero average. This
again makes s0 larger than 1.

E. Per-Frame Random CFO Injection by Bobs
As discussed in Sec. IV-D, for protocol-specific jamming,

as long as ✓ 6= ⌘, the value of s0 will be larger than 1. Thus
jamming can be detected by MACE. In contrast, if ✓ ⇡ ⌘, s0
gets close to 1, which makes the jamming signals hard to be
detected. However, it was shown in previous work that it is
possible for Mallory to set ⌘ close to ✓ [8] (which may then
foil the MACE detection). In particular, oscillator frequency
remains stable within short durations. By overhearing Bob’s
packets, Mallory can estimate the CFO between Bob and
herself, and thereby compensate for such CFO in the digital
domain before sending the jamming signals.

To address this problem, we further propose a counter-
measure called Per-Frame Random CFO Injection, with which
each Bob injects a random CFO in the digital domain before
sending his channel sounding pilots. Such random CFO cannot
be predicted and thereby imitated by Mallory. Mallory also
cannot estimate its value before completely receiving the 2
LTS, because Bob can actually inject the random CFO only to
the LTS but not the prepended short training sequences. In the
meantime, this random CFO should not lead to decoding error
at Alice (exceeds Alice’s correcting range, which is defined
in standards like IEEE 802.11ac) when there are no jamming
signals, which further makes it fully compatible with current
WiFi and LTE standards.

The detailed process of per-frame random CFO injection
is illustrated in Fig. 3, where f

Alice

, f
Bob

, and f
Mal

are
the actual oscillator frequencies of Alice, Bob, and Mallory,
respectively. f(�) denotes the frequency offset that causes �
phase rotation. First, when Bob overhears packets from Alice,
he can estimate f

Alice

� f
Bob

. Since Bob knows that Alice
can correct CFO within [f(�⇡), f(⇡)], he can then compute

𝑓𝐴𝑙𝑖𝑐𝑒  𝑓𝐴𝑙𝑖𝑐𝑒 + 𝑓(𝜋)   𝑓𝐴𝑙𝑖𝑐𝑒 + 𝑓(−𝜋) 

𝑓𝑀𝑎𝑙  𝑓𝑀𝑎𝑙 + 𝑓(𝛿𝑀𝑎𝑙,𝑚𝑎𝑥)   𝑓𝑀𝑎𝑙 + 𝑓(𝛿𝑀𝑎𝑙,𝑚𝑖𝑛) 

𝑓𝐵𝑜𝑏 𝑓𝐵𝑜𝑏 + 𝑓(𝛿𝐵𝑜𝑏,𝑚𝑎𝑥)   𝑓𝐵𝑜𝑏 + 𝑓(𝛿𝐵𝑜𝑏,𝑚𝑖𝑛) 

Mallory 

Bob 

Alice 

Fig. 3. Per-frame random CFO injection, with which each Bob injects a
random CFO in the digital domain before sending his channel sounding pilots.

a range [f(�
Bob,min

), f(�
Bob,max

)] in which the additional
random CFO will not lead to decoding error at Alice.

Similar to Bob, Mallory can also estimate f
Alice

� f
Mal

and thereby compute [f(�
Mal,min

), f(�
Mal,max

)]. As a result,
at Alice both ✓ of Bob and ⌘ of Mallory are between
�⇡ and ⇡. If Bob uniformly chooses his additional random
CFO within [f(�

Bob,min

), f(�
Bob,max

)], the best strategy for
Mallory is to also uniformly select an additional CFO within
[f(�

Mal,min

), f(�
Mal,max

)], or to just fix her CFO. In this
case, If MACE cannot detect protocol-specific jamming signals
when |✓ � ⌘| < !, we can computed that

P (|✓ � ⌘| < !) =
!

⇡
. (18)

As evaluated in Sec. V-D, ! has a small value in practice.

V. EXPERIMENTAL EVALUATION

In this section, we build a testbed and use experiments to
evaluate the impact of pilot distortion attacks and to study the
detection performance of MACE for practical massive MIMO.

A. Experimental Setup
We build a testbed for experimental evaluation by using

the WARP v3 [9] and the Argos massive MIMO AP [10],
[11], and use the topology shown in Fig. 4(a). It emulates a
network with one massive MIMO AP and multiple clients,
and a malicious node jams the channel sounding process
to reduce the network throughput. In particular, the Argos
massive MIMO AP has a 72-antenna array spaced by 6.35
cm (Fig. 4(b)). During each experiment, a single Bob and
a single Mallory are selected to transmit signals to Alice,
which emulates the channel sounding with time division and
with/without jamming signals. Moreover, to emulate different
CFO between Bob and Mallory, we add additional CFO to the
signals in the digital domain before each transmission. This is
because the inherent CFO between Bob and Mallory due to
hardware discrepancies is relatively stable over time. We also
change the transmit power of Bob and Mallory to explore
various combinations of SNR and SIR. All experiments are
conducted in the 5 GHz WiFi band with 20 MHz bandwidth.
In total, we collect measurements for over 3,000,000 packets.

The detailed format of each transmission from
Bob/Mallory to Alice is shown in Fig. 4(b). The first
part contains only LTS (defined in IEEE 802.11ac) from the
selected Bob, which are used to estimate Bob’s CSI/CFO (to
Alice) and to compute MACE’s output without jamming. In
comparison, the second part contains only jamming signals
from the selected Mallory: for non-protocol-specific jamming,
they are white Gaussian noise within the 20 MHz channel,
while for protocol-specific jamming, they are the same LTS
that are transmitted by Bob. We use the second part to
measure the jamming signal strength and Mallory’s CFO (to
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Fig. 4. (a) Experimental setup with the location of the massive MIMO
AP Alice, and part of the locations of the legitimate clients Bobs and the
adversary Mallory. (b) The Argos massive MIMO AP (Alice) and the format
of signals from Bob/Mallory to Alice.

Alice). Finally, the third part contains signals from both Bob
and Mallory, which are used to measure Bob’s distorted CSI
and MACE’s output with jamming.

In addition, while the Argos massive MIMO AP has 72
antennas, we also study the impact of pilot distortion attacks
and the detection performance of MACE when Alice has fewer
antennas. Particularly, we randomly select M antennas out of
the 72 if M < 72. For every M , this process is repeated
several times to obtain the average results.

B. Achievable Rate Reduction due to Pilot Distortion Attacks
To study the impact of the Pilot Distortion Attacks, we

use the Shannon equation log2(1 + SINR) to compute the
achievable rate of Bobs’ concurrent uplink transmissions, and
compare their values without and with jamming signals. The
results with Alice having different number of antennas and
using MMSE receive beamforming are shown in Fig. 5(a).

It can be observed that, even if only a single Bob’s CSI is
distorted, the achievable rate significantly decreases, ranging
from 49% to 38% reduction for protocol-specific jamming,
and from 36% to 29% for non-protocol-specific jamming,
when Alice’s antenna number increases from 8 to 72. The
main reason that non-protocol-specific jamming leads to a
smaller reduction is because its effective jamming strength
decreases when repeated LTS are used for CSI measurement.
In particular, the resulting average increase of inter-client in-
terference is measured to be 16.2 dB and 13.7 dB for protocol-
specific and non-protocol-specific jamming, respectively. In
comparison, using experimental data for Eq. (5), we can
compute the increase to be 15.3 dB and 12.5 dB, respectively.

Fig. 5(b) further displays the achievable rate when Alice
has 72 antennas but the number of Bobs increases from 4 to 9.
Because only a single Bob’s CSI is distorted, the achievable
rates under the pilot distortion attacks do not change much,
while the achievable rates without the attack decrease due to
increasing inter-client interference. Nonetheless, when there
are 9 Bobs transmitting concurrently, we can still observe that
the pilot distortion attack with protocol-specific jamming leads
to 26% decrease of achievable rate. In practice, the damage
will be even more severe, as limiting throughput reduction
to 26% requires the clients to perfectly adapt their MCS
to the maximum achievable rate given the attack properties.
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Fig. 5. Average per-client uplink achievable rate of un-distorted Bobs (a)
when Alice has different number of antennas (with 4 Bobs) and (b) when
there are different number of concurrent transmitting Bobs (with 72 antennas
at Alice). All Bobs’ SNR before receive beamforming are around 20 dB
(18 ⇠ 22 dB). And a single Bob’s CSI is distorted by around 0 dB SIR
(�2 ⇠ 2 dB) jamming signals. In the figures, NPS and PS stand for Non-
Protocol-Specific and Protocol-Specific jamming, respectively.

Otherwise, the attack can degrade throughput to zero due to
unrecoverable decoding errors. Meanwhile, Mallory can also
distort multiple CSI to further reduce the clients’ achievable
rate. And as more clients tend to be included in concurrent
transmissions in massive MIMO networks, the network-wide
impact of pilot distortion attack actually increases when Alice
has more antennas.

Therefore, for the pilot distortion attacks, a single ad-
versary jamming no more than 1/60 of the time (8µs over
> 500µs as discussed in Sec. III) and having no more transmit
power than any client can lead to 38% to 26% reduction of
achievable rate when 4 to 9 clients are grouped for concurrent
uplink transmission.

C. Variance of Normalized CFO Estimates without Jamming
To evaluate the detection performance of MACE, in the

following, we first discuss the CDF of the variance of nor-
malized CFO estimates without jamming signals. Particularly,
we compare 2 methods for noise strength estimation at Alice:

(1) Non-Signal-Aided. Alice measures noise strength
when there are no incoming signals. This method only allows
Alice to measure the noise strength generated by the receiver.

(2) Signal-Aided. Alice knows that for her ith antenna,
the incoming signals have a structure of {Y1i|Y2i}, where
Y1i = R

i

+ W1i and Y2i = R
i

ej✓ + W2i. Therefore, Alice
can first estimate ✓̂ and then compute the noise strength as
E{|Y2ie

�j✓̂ � Y1i|2}/2. This method requires an accurate
estimation of ✓, yet it does not include the noise correlated
with signal R

i

.
It can be first observed in Fig. 6(a) that, for the Non-

Signal-Aided method, the experimental results with high/low
SNR deviate from the theoretical calculation. The main rea-
sons are that: when SNR is high, noise strength introduced by
the transmitter begins to surpass that generated by the receiver,
which results in large normalization error in Eq. (11); when
SNR is low, the error in Eq. (9) becomes large. In comparison,
when SNR is within 5 ⇠ 25 dB, the experimental results
are close to the theoretical calculation. The main reason for
the long tail is that the SNR of Alice’s different antennas
vary significantly: in experiments, the average range of SNR
difference is 22 dB.

In contrast, as can be observed in Fig. 6(b), the difference
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Fig. 6. When there are no jamming signals, (a) and (b) display the variance of normalized CFO estimates with noise strength measured by the (a) Non-Signal-
Aided and (b) Signal-Aided method, respectively. When there are jamming signals, (c) and (d) display the variance of normalized CFO estimates (with noise
strength measured by the Non-Signal-Aided method) when there are (c) non-protocol-specific jamming (⇠ 20 dB SNR) and (d) protocol-specific jamming
(⇠ 20 dB SNR, ⇠ 10 dB SIR, 0.1 rad bin size), respectively. Alice has 72 antennas.

between the experimental results and the theoretical calcu-
lation decrease when the Signal-Aided method is used to
measure the noise strength. In particular, when the transmitter
side noise is included, the experimental results at high SNR
become much closer to the theoretical calculation. However,
the Signal-Aided method cannot be employed by MACE,
because it will mistakenly include the white Gaussian jamming
signals when computing the noise strength. Therefore, all of
the following figures are based on the the Non-Signal-Aided
method.

D. Variance of Normalized CFO Estimates with Jamming
When there are non-protocol-specific white Gaussian jam-

ming signals, the variance of the normalized CFO estimates
significantly increases. In Fig. 6(c), the x-axis now extends to
200 instead of 10 as in Fig. 6(a) and 6(b). It can be also seen
that, when the jamming signals become stronger, the ratio of
✓̂
0(err)
i

/✓̂0
i

computed in Eq. (15) increases, and therefore the
variance of the normalized CFO estimates also increases.

For protocol-specific jamming, we observe a similar trend
that the variance of the normalized CFO estimates increases
with stronger jamming signals. Due to space limitation, the
corresponding results are not shown. Instead, in Fig. 6(d), we
display the variance of the normalized CFO estimates when
the CFO between Mallory and Bob changes: ✓ is the phase
rotation due to CFO between Alice and Bob, while ⌘ is the
phase rotation due to CFO between Alice and Mallory. It
can be seen that when |✓ � ⌘| is small, the variance of CFO
estimates is also small, which makes the jamming signals hard
to be detected. This is the main reason why per-frame random
CFO needs to be injected by Bobs before sending the channel
sounding pilots (as discussed in Sec. IV-E). Nevertheless,
when |✓ � ⌘| increases, the variance also quickly increases.

E. ROC Curves of MACE
To characterize the performance of MACE, we plot its

ROC curves for both non-protocol-specific and protocol-
specific jamming: the false positive is the mistaken detection
rate when there are no jamming signals, while the true positive
is the correct detection rate when there are jamming signals.
For performance evaluation baselines, we also consider the
following 3 detectors that employ the repeated symbols re-
ceived by Alice, and compare their performance to MACE:

(1) Raw-CFO. As discussed in Sec. IV-C, MACE normal-
izes the CFO estimates by the corresponding SNR. In contrast,

Raw-CFO does not normalize the CFO estimates and directly
compute their variance.

(2) MSE-Abs-Value. Without jamming signals, Alice’s
ith antenna receives {Y1i|Y2i}, where Y1i = R

i

+ W1i and
Y2i = R

i

ej✓ +W2i. Therefore, E{||Y
i1|� |Y

i2||2} should be
small and is only related to the noise strength. MSE-Abs-Value
normalizes E{||Y

i1|� |Y
i2||2} by the noise strength of each

antenna and computes the average over all antennas.
(3) MSE-Raw-Value. Different from MSE-Abs-Value,

MSE-Raw-Value computes E{|Y
i1 � Y

i2|2}.
Non-Protocol-Specific Jamming. Fig. 7(a) plots the ROC

curves of the 4 detectors with white Gaussian jamming signals,
where a single detection threshold is set for a wide range of
SNR (5 ⇠ 35 dB) and SIR (�5 ⇠ 35 dB) with SNR�SIR�5
dB. It can be observed that MACE achieves 0.97 true positive
at 0.01 false positive. In contrast, Raw-CFO only achieves 0.50
true positive at the same false positive. This is mainly because
the large variance of SNR at Alice’s different antennas leads
to a relatively large variance of raw CFO estimates (compared
to MACE) even without jamming signals.

In comparison, MSE-Raw-Value has even worse detection
performance than Raw-CFO, while MSE-Abs-Value has sim-
ilar detection performance to MACE. The main reason is the
CFO between Alice and Bob, which makes E{|Y

i1 � Y
i2|2}

have a large value even without jamming signals. However,
MSE-Abs-Value addresses this problem by taking the absolute
value of the received signals (i.e., E{||Y

i1|� |Y
i2||2}).

Protocol-Specific Jamming. As discussed in Fig. 6(d),
the detection performance of MACE when there is protocol-
specific jamming is closely related to the CFO between Bob
and Mallory. Therefore, in order to plot the expected ROC
curves, we vary |✓ � ⌘| between 0 ⇠ ⇡ in the experiments,
where ✓ is the phase rotation due to CFO between Alice and
Bob, while ⌘ is the phase rotation due to CFO between Alice
and Mallory. After that, we group the data based on |✓�⌘| by
dividing 0 ⇠ ⇡ into bins with 0.1 rad width. ROC curves of
each bin is computed first and then the expected ROC curves
over all bins are obtained. The results are shown in Fig. 7(b).

It can be observed that, similar to non-protocol-specific
jamming, Raw-CFO and MSE-Raw-Value have relatively poor
detection performance. Contrarily, while MACE still achieves
0.97 true positive at 0.01 false positive, the true positive of
MSE-Abs-Value quickly decreases to 0.78. A main reason is
shown in Fig. 6(c) and 6(d), which demonstrate that when |✓�
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Fig. 7. ROC curves of (a) non-protocol-specific and (b) protocol-specific (average over different CFO between Bob and Mallory) jamming signals. For
protocol-specific jamming signals, we further plot the ROC curves with different CFO between Bob and Mallory for (c) MACE and (d) MSE-Abs-Value
detector. The range of SNR and SIR are 5 ⇠ 35 dB and �5 ⇠ 35 dB, respectively, with SNR�SIR�5 dB. Alice has 72 antennas.

⌘| is small, MACE has a much better detection performance
than MSE-Abs-Value. This is because for MSE-Abs-Value,
the result of E{||Y

i1|� |Y
i2||2} mainly depends on the noise

strength, while for MACE, the variance of the CFO estimates
is related to the SINR (Eq. (9)). Therefore, even if |✓ � ⌘| is
small, the change of SINR can still be detected by MACE.

Finally, as can be seen in Fig. 7(a) and 7(b), the true posi-
tive of MACE with protocol-specific jamming converges more
slowly to 1 (with increasing false positive) when compared to
non-protocol-specific jamming. This is mainly because there is
still a chance that |✓�⌘| is small even if Bob injects per-frame
random CFO before sending his channel sounding pilots.

Therefore, for both non-protocol-specific and protocol-
specific jamming, by setting a single threshold, MACE can
achieve 0.97 true positive at 0.01 false positive for various
client/adversary locations, and for a wide range of SNR
(5 ⇠ 35 dB) and SIR (�5 ⇠ 35 dB) with SNR�SIR�5 dB.

F. Impact of Number of Antennas and Repeated Symbols
As shown in Fig. 5(a), pilot distortion attacks lead to larger

reduction of per-client achievable rate when Alice has fewer
antennas. In the following, we explore whether MACE can
still detect jamming when Alice’s antenna number reduces.

Fig. 8(a) shows the true positive (at 0.03 false positive)
for both non-protocol-specific and protocol-specific jamming
when Alice’s antenna number increases from 2 to 72. When
the number of antennas increases, the true positives for both
types of jamming increase. This is mainly because with fewer
antennas, the variance of both � in Eq. (10) and s0 in Eq. (12)
increases, thereby leading to a larger variance of normalized
CFO estimates even without jamming signals. However, for
protocol-specific jamming, because there is always a chance
that |✓ � ⌘| (Eq. (16)) is small, its true positive quickly
saturates, and becomes smaller than that of non-protocol-
specific jamming afterwards. Nevertheless, for both types of
jamming, MACE can achieve 0.97 true positive at 0.03 false
positive with only 16 antennas. For larger than 5 dB difference
between SNR and SIR, an even smaller number of antennas
are required at the AP.

Furthermore, we also study the detection performance of
MACE when fewer than 64 (which is the length of 1 LTS)
repeated symbols are employed. In particular, we reduce the
number to as few as 1, and the results with Alice having 72
antennas are shown in Fig. 8(b). Compared to Fig. 8(a), it
can be seen that, while the true positive decreases with the
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Fig. 8. True positive at 0.03 false positive (a) when Alice has different
number of antennas (with 64 repeated symbols) and (b) when different number
of repeated symbols are input into MACE (with 16 or 72 antennas). The
SNR and the SIR is within 5 ⇠ 35 dB and �5 ⇠ 35 dB, respectively, with
SNR�SIR�5 dB. In the figures, NPS and PS stand for Non-Protocol-Specific
and Protocol-Specific jamming, respectively.

number of repeated symbols, the operational limit of MACE
is primarily from the number of antennas at Alice. If we set a
same threshold with 0.97 true positive at 0.03 false positive,
we can observe that MACE needs to use at least 16 repeated
symbols for a 72-antenna array, or 32 repeated symbols for a
16-antenna array.

Therefore, even with only 16 antennas at the AP and 32
repeated symbols, MACE can achieve 0.97 true positive at
0.03 false positive with the same client/adversary locations
and SNR/SIR range; consequently, MACE can also be used
for general-purpose jamming detection, even with a moderate
number of antennas and repeated symbols (e.g., cyclic prefix
of OFDM symbol).

VI. RELATED WORK

Pilot Distortion Attacks. Because the improvements
brought by massive MIMO are closely related to the accuracy
of clients’ CSI at the AP, a smart adversary can significantly
degrade network performance by reducing accuracy of CSI
measurements. Thus, jamming during channel sounding to
aid active eavesdropping in massive MIMO networks was
studied in [5]–[7]. Due to the channel sounding pilots from
the eavesdropper, the AP now measures a combination of
the client’s and the eavesdropper’s channel, which will sig-
nificantly reduce the client’s secrecy rate. Moreover, if the
adversary jams both channel sounding and data transmission,
clients’ achievable rates were shown to quickly saturate even
with unlimited antennas at the AP [3], [4].



In comparison, we present pilot distortion attacks, and
show that even if the adversary is active only during channel
sounding, which takes no more than 1/60 of the time, concur-
rent uplink transmission in practical massive MIMO networks
can be thwarted. We further demonstrate by experiments that
an adversary having no more transmit power than any client
can lead to large reduction of achievable rate of all clients.

Jamming Detection. Various techniques have been pro-
posed to detect jamming in wireless networks. However, when
they are applied to pilots in massive MIMO networks, a first
problem will be the excessively high startup cost (training
time). Because concurrent uplink transmission is employed,
much longer time is needed for the AP to collect enough
single-user transmissions from a specific client in order to
compute a priori statistics of the packet delivery ratio [16], the
received signal strength [17], or the angle-of-arrival informa-
tion [6]. Moreover, the concurrent transmission also makes the
AP hard to differentiate packet decoding error due to incorrect
CSI from that due to expired CSI, which renders jamming
detection based on packet decoding error less effective [18].

Another problem lies in the network efficiency. Different
from data packets, channel sounding pilots are management
frames that have lengths as short as several training sequences.
Consequently, jamming detection should only introduce min-
imum network overhead. Techniques that are based on em-
bedded secret keys [19], specially designed random PSK
symbols [20], and information exchange between AP and
clients [21], [22] all add to network overheard.

In comparison, we propose MACE, which employs the
capabilities of the many antennas at the AP to detect jamming
with zero startup cost, zero additional network overhead, and
no shared secrets between the AP and the clients. We also
implement MACE in our testbed and show that it achieves
superior detection performance for practical massive MIMO.

Lastly, CFO has been employed to enhance network se-
curity, especially for device fingerprinting, e.g., [23], [24].
MACE differs from them in that MACE does not need to
estimate the value of the CFO. Instead, MACE uses the
variance of the CFO estimates of a single frame at the AP
for jamming detection.

VII. CONCLUSION

In this paper, we present the Pilot Distortion Attacks,
which show that an adversary jamming only the channel
sounding of even a single client can lead to all-client denial-
of-service in practical massive MIMO networks. As a counter
mechanism, we propose MACE, which detects jamming with
zero startup cost and zero additional network overheard, and
requires no shared secrets. Our experiments show that MACE
can achieve 0.97 true positive at 0.01 false positive.
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