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Abstract— With increasing richness in features such as person-
alization of content, web applications are becoming more complex
and hence compute intensive. Traditional approaches towards the
design of web cluster architectures have targeted static content
such as images that are usually network intensive. However,
these methods are not applicable to dynamic content applications
which are more compute intensive than static content. This paper
proposes a suite of algorithms which optimize the performance
of dynamic content applications by considering both server CPU
loads and network latencies. The goal of the algorithms is to
reduce client access times while also minimizing the resource
utilization. The algorithms are designed for a hosting architecture
comprising a grid of clusters inter-connected via high bandwidth
links and each cluster hosting a complete application replica. A
server migration algorithm allocates servers on-demand within
a cluster while a server selection mechanism enables statistical
multiplexing of resources across clusters by redirecting requests
away from overloaded clusters. The paper also proposes a cluster
decision algorithm which decides between serving a request
locally after migrating-in additional servers at the local cluster or
remotely by redirecting the request to a remote server that can
serve the request earliest. Through a combination of analytical
modeling, simulation over traces from large e-commerce sites
and testbed implementation, we explore the performance savings
achieved by the proposed algorithms.

Index Terms— Web Servers, Multitier systems, Wide-Area
Networks, Request Redirection, Resource Allocation

I. INTRODUCTION

THE increasing reliance on the WWW as a ubiquitous
medium becomes ever more apparent whenever there is

a disruption in the availability of a certain web service. Fur-
thermore, due to the much higher access network bandwidths
today than a decade ago, clients of web services have much
higher expectations with the service quality and hence are
less tolerant to degradation in throughput or access times. The
disruptions and degradations in a web service can be accounted
for by one of the following two overload conditions: (1) Time-
of-Day effect which is the diurnal variation in traffic observed
at most web sites and reported to vary between a factor of
2 and 20 throughout the day [10][11] and; (2) Flash Crowd
arrivals which is a sudden surge in users at a web site at an
unexpected time or of unexpectedly high magnitude.

Typically, web content is distributed across multiple clusters
world-wide so that the content can be brought closer to
the users accessing it thereby decreasing the user perceived
latencies. Distributed cluster architectures enhance the user
perceived Quality-of-Service (QoS) since for static content
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and Knightly was supported by NSF ITR grant CNS-0331620 and a grant
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such as image files, network latency and hence transmission
time is a critical component. However, with the latest trend
towards personalizing users’ browsing experience, content
providers are using an increasing amount of dynamic content
in their web sites. Such content is generated dynamically
depending on the user’s location, past history or the nature of
the request itself e.g., latest stock quote or latest auction bid.
In such cases, a typical web page would comprise both static
and dynamic fragments. However, dynamic content places
different demands on the resources involved as compared
to static content. Since processing dynamic content involves
either forking a new process (e.g., CGI scripts) or accessing
database tables (PHP scripts), it is more compute intensive
than static content. This implies that the server selection
mechanisms as designed for static content may not be optimal
for dynamic content. While for static content, forwarding a
request to the closest server makes sense, for dynamic content,
the optimal server selection mechanism must take both the
network latencies and server loads in to account. While under
certain conditions it may make sense to forward a dynamic
content request to the closest server, under different conditions
it may be better to forward it to the server furthest away, if
it has the lowest sum total of network latency and expected
server processing time.

Moreover, current web cluster architectures are manually
configured and cannot automatically adapt to changing work-
loads such as those caused by time-of-day effects or flash
crowds. When these architectures are provisioned to handle
the average workload, they suffer significant performance
degradation when loads exceed capacity. In contrast, if these
architectures are provisioned to handle the peak workload,
they result in poor resource utilization for most of the time.
On the other hand, web sites continue to grow larger and
popular sites such as Google are known to contain as many
as 100,000 servers spread across 60 clusters (source: CBS’s
60 minute interview on Google in January 2005). An increase
in the size and scale of clusters imposes severe demands on
the operational costs, especially the power usage. Accord-
ing to a recent study [33] based on information collected
from data centers, the total power used on servers and their
cooling infrastructure represented 1.2% of the total power
usage within the United States. Data centers are increasingly
being architected with solutions such as HP’s Dynamic Smart
Cooling [4] that involve monitoring and adjusting air flow
within a data center to reduce power usage. Thus, dynamically
allocating resources within a data center would have the added
advantage that redundant servers can be powered off, leading
to significant power cost savings. Alternatively, redundant
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servers can be migrated in to the cluster of another web site
with a greater need for the extra resources. However, the
challenge in designing a dynamic resource allocation policy
is to minimize server resources without affecting the user
perceived QoS.

Building on the two observations above, this paper proposes
a suite of algorithms for dynamic content web sites such
that performance as characterized by client access time and
resource utilization is optimized even during overload condi-
tions. We design the algorithms for an architecture comprising
of a global-scale grid of clusters with each cluster hosting
the same content and inter-connected to other clusters through
custom high-bandwidth links. This architecture is representa-
tive of the large-scale e-commerce companies such as Yahoo,
Google and Amazon, which host a single application across
multiple data centers for performance and fault-tolerance
reasons1. Each cluster manages its resources through an
infrastructure-on-demand architecture similar to the ones pro-
posed in references [9], [39], [38], with server resources being
allocated only when needed. The paper proposes the following
two mechanisms that jointly optimize cluster performance:
(1) Quality-of-Service for Infrastructure-on-Demand (QuID),
a mechanism to optimize performance within a cluster by
adapting the number of servers according to client demands.
Through QuID, a hosted application experiencing a demand
surge can migrate servers from a shared pool or away from
underloaded clusters co-located within the same data center;
(2) Wide Area ReDirection (WARD), a mechanism that views
the cluster grid as a single resource pool and multiplexes
resources across the grid. This is done via a server selection
mechanism to redirect requests to the best server, which could
be either in the local cluster or a cluster remote to the user.

Specifically, we introduce the following algorithms: (1)
QuID-online, a dynamic resource allocation algorithm that
exploits long term variations in traffic to allocate resources
within a cluster such that the hosted application’s QoS is still
met while using a lower number of servers compared to static
allocation; (2) WARD per-request (or per-query) redirection
algorithm which redirects requests (or queries) away from an
overloaded cluster to a server that minimizes the total net-
working plus server processing delay and; (3) cluster decision
algorithm that combines the two algorithms above to decide
which one should be used under which workload conditions.
We motivate the cluster decision algorithm via an example.
Suppose a cluster is overloaded due to sudden popularity of the
application in a geographic region and additional servers are
available locally, either from a pool of unused servers or from
an underloaded application’s cluster. If the workload burst is
expected to be sustained for a duration longer than migration
time, defined as time needed to allocate a new server, then
allocating new server(s) via QuID would achieve a better
performance. However, if the workload burst is too small, then
new servers if allocated, may have to be returned back to the
pool immediately and hence server allocation via QuID may
be prohibitive. In such a scenario, it would be of greater benefit

1Applications are hosted on such a cluster grid architecture with either
full- or partial-replication i.e., the content is replicated either completely or
partially on another cluster instance. In this paper, we assume full replication.

to redirect the requests away to a remote cluster via WARD.
In order to quantify the performance gains achievable by the

QuID and WARD mechanisms, we also introduce analytical
models for each of them. Specifically, we formulate the dy-
namic server allocation problem as a constrained optimization
problem, namely QuID-optimal, solution to which yields the
optimal number of resources needed for an application’s arrival
and demand sequence. While QuID-optimal is not realizable in
practice, it serves an important purpose by providing a bound
on the resource savings that can be achieved by any dynamic
allocation policy subject to satisfying an application’s QoS
requirements. Next, we formulate the server selection problem
by assuming a single bottleneck tier in each multi-tiered cluster
and modeling it as a M/G/1 queue and by considering inter-
cluster latencies as the cost of redirection. Solution to the
analytical framework for WARD yields the optimal percentage
of requests that should be redirected to a remote cluster replica
under given server and network characteristics. The WARD an-
alytical model allows us to perform a systematic performance
evaluation of the benefits afforded by WARD. An example
finding by this model is that for dynamic content applications,
a server selection mechanism must obtain fine-grained server
load information owing to a much lower tolerance to errors
in server loads compared to network latencies. This vindicates
our hypothesis that for dynamic content applications, a server-
side redirection policy can achieve a better performance than
client-side redirection policies which can not obtain server
load information at the same granularity and similar overheads
as the server-side policies.

Finally, via trace-driven simulations as well as implemen-
tation of a dynamic content application (online bookstore),
we provide a proof-of-concept demonstration of the perfor-
mance benefits due to QuID and WARD. We implement a
testbed that realizes the cluster grid architecture over which
we replicate the online bookstore application based on the
TPC-W benchmark [7]. Each cluster is implemented with
Apache as web tier, PHP as application tier and MySQL as
database tier while the inter-cluster link delays are emulated
via Nistnet [6]. Since the database tier bottlenecks first, we
implement QuID and WARD algorithms at this tier. We use
this experimental testbed for three purposes. First, we compare
WARD’s redirection algorithm against strawman algorithms
to prove that combining both server loads and latencies in
the redirection decision yields significant benefits. Second, we
validate that the WARD analytical model based on M/G/1
queues does model the implementation fairly accurately de-
spite its simplifying assumption of Poisson arrivals and hence
the performance implications derived from the model can be
expected to hold in practice. Third, we validate our cluster
decision algorithm by examining the workload conditions
under which we can achieve better performance by redirecting
via WARD versus migrating new servers via QuID.

The rest of this paper is organized as follows. Section II
introduces the cluster grid architecture and Section III intro-
duces the QuID-online, WARD per-request and probabilistic,
and the cluster decision algorithms. Section IV formulates
the analytical models for QuID and WARD. Next, Section V
quantifies the performance benefits afforded by QuID and
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Fig. 1. Cluster grid architecture with QuID for improving intra-cluster performance and WARD for inter-cluster resource sharing.

WARD and also studies the tolerance of WARD to errors.
Section VI describes our testbed implementation and also
provides a systematic performance evaluation of QuID and
WARD against strawman algorithms as well as a validation
of the cluster decision algorithm. Section VII provides an
overview of related work and we summarize our conclusions
in Section VIII. Finally, the Appendix provides details on the
optimization problem, QuID-optimal.

II. CLUSTER GRID ARCHITECTURE

We present our web hosting architecture in which an
application is replicated across a grid of clusters that are
inter-connected by custom high-bandwidth links as shown in
Fig. 1(a).

To illustrate this architecture, let’s consider the requests of
an e-commerce session. First, a client request arrives at the
initial cluster, where the selection of the initial cluster is via
client-side redirection policies such as DNS round robin or
more sophisticated policies such as [25], [21], [3]. On arriving
at the initial cluster, a dispatcher dispatches the request to a
server on the web-tier using either round robin or sophisticated
policies as in reference [13]. If the request is for a static page,
it is served by the web server which also forms the response
and returns it to the user. If the request is for dynamically
generated content such as those involving purchase processing
or shopping cart, then it is forwarded to a server in the
application-tier. The application server then resolves all the
dynamic fragments embedded within the client request by
generating relevant database queries. The decision of which
database server must handle a database query is made by
another dispatcher. Finally, the application server collects all
the responses to the database queries and returns the page to
the web server, which then forwards it back to the client.

The proposed architecture provides a foundation for efficient
utilization of server resources: (1) within a cluster via QuID-
driven dynamic allocation of server resources and; (2) across
clusters via WARD-driven statistical multiplexing of requests.
Thus, when a particular cluster becomes a hot-spot due to
flash crowds or time-of-day effects, additional servers may be
added to the local cluster using QuID. However, if servers are
not available locally, requests can be transparently redirected
using WARD to other clusters while still ensuring a latency
benefit to clients.

The decision of when to migrate additional servers versus
redirect them to remote clusters is a policy decision that

depends on both quantitative factors such as migration time,
inter-cluster latency and predicted duration of the traffic burst
as well as qualitative factors such as agreement between
cluster operators on leasing servers. For instance, if the burst
duration is estimated to be less than migration time, then it
may be advantageous to redirect requests to a remote cluster.
However, if it’s observed that a significant fraction of requests
are being redirected, then conditional on server availability
locally, additional servers may be added to the local cluster.
Since time-scales are an important aspect of the decision
process between redirecting a request versus allocating a new
server locally, in Section III-C, we propose a cluster decision
algorithm that takes traffic burstiness in to account.

A. QuID System Model

Fig. 1(b) shows a simplified abstraction of the cluster grid
architecture to explore the issue of QoS-driven dynamic server
migration. The system model depicts a single tier of servers
(database tier) as well as the dispatcher that allocates sessions
and requests to servers. For a cluster hosting a single appli-
cation, the system can be viewed as dynamically migrating
servers to and from a shared pool according to the workload
and QoS requirements of the hosted application.

Importantly, there is a migration time M associated with
migrating a server from the shared pool and into a particular
cluster tier. Thus migrating a server in to the database tier
would consist of the following components: (1) a constant
time, Mboot for booting up the operating system and starting
the server daemon and; (2) a variable time, Mquery to restore
the new server’s state such that it is consistent with the existing
servers in the tier. Specifically, with respect to a database
server, this can be achieved by re-applying the queries that
were made since the last time that this server was part of
the database tier. Based on experiments on a real testbed as
described later in Section VI, migration time can be expected
to be on the order of minutes, depending on the operating
system used and the amount of work involved in bringing the
server state up-to-date.

Similarly, releasing a server from a cluster also takes time,
as even after application servers stop sending new queries
to a database-tier server, all queries currently in progress at
the server must be completed or timed out. Based on server
logs investigated for an E-commerce web site (see Fig. 2), we
expect typical “warm-down times” to migrate out servers to
be in the range of minutes as well.
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B. WARD System Model

Once, a request arrives at a cluster tier, a WARD dispatcher
can potentially redirect the request to a remote cluster via a
redirection algorithm or decide to service it at the local cluster
tier. In multi-tiered clusters, WARD can be implemented on
the dispatchers in front of any of the tiers: web, application
or database. If implemented before the web-tier, then WARD
can be used to redirect complete requests to new clusters.
Alternatively, if implemented before the database-tier, WARD
can be used for finer-grained dispatching of the database
queries to new clusters.

Thus, the objective of the redirection algorithm is to redirect
requests or queries only if the savings in the processing time
at the remote cluster overwhelm the network latency incurred
to traverse the backbone in both the forward and reverse path.
In this way, end-to-end client delays can be reduced while
requiring changes only to the dispatcher, and leaving other
elements unchanged.

III. ALGORITHMS

In this section, we present our algorithms for achieving
intra-cluster as well as inter-cluster performance benefits.
A. QuID Algorithm

First, we present QuID-online, an algorithm that attains
a predictable cluster-wide QoS by maintaining a targeted
average CPU utilization by acquiring and releasing servers
in response to changes in load. With simple queuing theoretic
arguments and simulation experiments, we show that QuID-
online’s utilization-target provides an effective mechanism for
maintaining cluster-wide QoS. Moreover, by time-averaging
workload variations and (necessarily) gradually migrating new
servers into and out of the cluster, the algorithm minimizes the
impact of rapid fluctuations in load and instead responds to
long-time-scale trends.

To achieve these goals, the online algorithm requires mea-
surements characterizing the state of the system. Thus, the
QuID-online cluster manager depicted in Fig. 1(b) period-
ically queries the database servers for summary workload
information. The measurement interval, which we denote by
τ , is typically on the order of minutes in duration. Thus,
every τ the cluster manager queries servers for the following
measurements: X , the number of request completions in the
previous measurement interval; A, the number of request
arrivals in the previous measurement interval; and U , the
average CPU utilization (over all servers) in the previous
measurement interval. Thus, U = (U1 + U2 + · · · + UN)/N
from the reported values of individual CPU utilizations. The
average CPU utilizations are generally available from oper-
ating system monitors and application level measures such
as request arrivals and completions per interval are typically
available from server logs. In both cases, this information is
summarized at the servers and communicated to the cluster
manager.

Given N , the current number of servers, as well as µ,
the target utilization, QuID-online computes N ′, the required
number of servers for the next interval as follows:

1) D = U/X , compute average demand per completion;

2) U ′ = max(A, X)D, compute the normalized utilization
based on the current number of servers and all arrivals;

3) N ′ = dNU ′/µe, compute the upper bound on number
of servers needed to achieve the target utilization µ.

Note that when the system is under increasingly heavy load,
arrivals may exceed completions and the computation of U ′

takes this into account. This allows QuID-online to react more
quickly to increases in load than via the use of X or U alone.
Moreover, we use the maximum of A and X to avoid releasing
servers too quickly, thereby making the algorithm less sensitive
to short-term decreases in load.

QuID-online initiates requests to acquire or release servers
whenever N ′ 6= N . However, note that the overhead due to
server migration time prohibits rapidly changing the number
of servers. There are several aspects of the algorithm which
mitigate the effects of this overhead. First, the measurement
interval τ can be increased to average out short-term load
fluctuations. Second, we note that the migration time itself
provides a damping mechanism and we employ an additional
policy as follows. If more servers are needed (N ′ > N),
servers previously warming down in preparation for migration
out of the cluster are reinstated into the cluster in a last-in-first-
out order before any requests are made to acquire additional
servers. Similarly, if fewer servers are needed (N ′ < N),
servers previously warming up in preparation to join the cluster
are released in a last-in-first-out order before any requests
are made to release servers doing useful work. Finally, we
incorporate the overhead of migration time by accounting for
servers migrating to and from the cluster in the computations
of the average numbers of servers.

QuID online’s use of a target CPU utilization µ as a control
parameter for QoS is justified as follows. First, assume that
servers have a large number of threads so that requests rarely
incur software blocking. Moreover, consider that threads are
scheduled in a first-in-first-out manner without preemption
by their server’s CPU. Furthermore, the individual sessions
constituting the total workload can be considered to be inde-
pendent. In this scenario, a server cluster as in Fig. 1(b) can
be modeled as a G/G/N system which has a mean response

time R under heavy traffic given by [32]: R = U
X

+
σ2

a
+

σ
2

b

N2

2t̄(1−U) ,
where σ2

a and σ2
b are the variance of inter-arrival and service

times respectively, and t̄ is the mean inter-arrival time. Since
the response time R is determined by the utilization U , we
maintain a target utilization µ by controlling the number of
servers N .

Regardless, QuID-online does not attempt to relate the mean
response time R and average utilization U directly and makes
no assumptions about inter-arrival or service time distributions.
However, the relationship between response time and target
utilization can be determined empirically for a particular
workload. We utilize this methodology in Section V and show
how a proper setting of µ can control cluster-wide QoS.

B. WARD Algorithms

Within the framework of wide-area redirection of requests
or queries to improve cluster performance, we propose two
different algorithms.
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The first algorithm, namely per-request (or, equivalently
per-query) redirection computes the best server per request (or,
per-query) as its name implies. The objective of the redirection
algorithm is to minimize the total time to service a request.
Namely, if a request arrives at cluster k, then the objective is
to dispatch the request to cluster j satisfying

argminj (2 ∆kj + Tj) (1)

where ∆kj denotes the network delay between cluster k and
j and Tj is the request’s service time at cluster j.

In practice, the actual service time at each remote cluster
Tj cannot be known in advance. Yet, it can be estimated from
the average load at cluster j as well as the request type.
Thus, we employ a measurement-based algorithm in which
the average Tj is estimated from ρj , the mean load at cluster
j, as well as the request type. In WARD, this is achieved
by measuring a mean delay vs. load profile for each request
type in an offline workload characterization phase as described
later in Section VI-B. Clusters then periodically exchange
load information to refine their estimates of each others’
processing delays. In contrast, ∆kj remains relatively static
among clusters due to their high-speed interconnection links.
Thus, on request arrival, the dispatcher uses the measured load
at cluster j on the delay vs. load profile corresponding to this
request’s type to estimate the total service time on cluster j.

We consider a second policy, namely probabilistic redirec-
tion which does not make a decision on a per request basis
but rather computes a fraction of requests to be remotely
dispatched given the cluster workloads and inter-cluster laten-
cies. In particular, we show in Section IV that under certain
simplifications there is an optimal ratio of requests that should
be remotely dispatched in order to minimize the delay of all
requests. Once this ratio is known, the dispatcher can simply
remotely redirect a request with the computed probability.
C. Cluster Decision Algorithm

Finally, we present the cluster decision algorithm that de-
cides between QuID and WARD under different workload
conditions. The intuition behind the algorithm is that if the
traffic burst is expected to be sustained for a period larger
than the migration time, then new servers are migrated locally
via QuID. In contrast, if the traffic burst is expected to last for
a time-period smaller than the migration time, then migrating
new servers is prohibitive and hence requests are redirected to
other clusters via WARD.

The algorithm quantifies traffic burstiness by estimating the
workload’s autocorrelation for lag equal at the key time-scale
of migration time. While calculating the autocorrelation, we
consider the number of requests seen at the dispatcher in the
last n time intervals. Let the sequence of requests seen at the
dispatcher be represented by Y1, Y2, ...Yn. For ease of notation,
let each time interval be a second and let migration time be
m seconds. Let Y represent the sample mean for the time
series of requests. Autocorrelation coefficient at time n for a
lag equal to migration time of m seconds is given by:

Â(n, m) =

∑n−m

t=1 [Yt − Y ][Yt+m − Y ]∑n

t=1(Yt − Y )2
(2)

Note that Equation 2 calculates the normalized autocorre-
lation coefficient such that the value at lag of zero is 1.0 and
the value varies between 0 and 1 always. Intuitively, a high
value for Â(n, m) signifies that the workload is correlated
within the last migration time interval and can be expected to
remain predictable for the next migration time interval making
it easier for QuID to track. In contrast, a low value signifies
that the workload is highly bursty and unpredictable and hence
difficult for QuID to track.

Thus, the cluster decision uses the autocorrelation coeffi-
cient as measured in the last n intervals as an estimate for
the future traffic trend. The algorithm dictates the usage of
QuID to migrate additional servers to the local cluster when
the workload is predictable (Â(n, m) ≥ θ) while requests are
redirected to remote clusters via WARD when the workload
is unpredictable (Â(n, m) < θ). In Section VI-E, we estimate
the value of the autocorrelation threshold θ experimentally for
a testbed implementation of an online bookstore and given
values of migration time and mean workload arrivals.

IV. ANALYTICAL MODELS

In this section, we first develop an optimal solution for
achieving intra-cluster performance benefits via server migra-
tion. Next, we develop an analytical model for achieving inter-
cluster benefits via redirection.
A. QuID

In this part of the section, we develop QuID-optimal, an
optimal off-line algorithm for dynamic resource allocation
via server migration. QuID-optimal provides a benchmark for
evaluation of practical algorithms by computing the minimum
number of servers required by a server migration algorithm
such that the application’s response time requirement (QoS)
is bounded cluster-wide. Consequently, it characterizes the
maximal available gain of any dynamic policy as compared
to a static policy.

QuID-optimal uses as its inputs a workload trace, i.e.,
a sequence of session and request arrival times as well as
the corresponding server CPU processing time required to
service each request. For a particular migration time and
maximum response time, the algorithm jointly computes the
best sequence of dispatching decisions (allocation of requests
to servers), scheduling decisions (when to serve each request),
and dynamic server allocation decisions (how many servers
are required to ensure all request response times are within
the required QoS bound). The solution, while not realizable in
practice, provides the “best” decision sequence among all three
dimensions in that it provides the minimum server solution
subject to the maximum response time QoS requirement.

The problem formulation for QuID-optimal is presented in
the Appendix. To solve this problem, we first formulate the
dynamic server allocation problem as a constrained optimiza-
tion problem. Next we transform the non-linear problem into a
linear programming problem and show that the solutions of the
two problems are equivalent. Finally, we discuss a simplified
and more computationally feasible (but still not on-line real-
izable) bound that relaxes some of the most computationally
intense constraints.
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B. WARD

Next, we develop an analytical model for wide area redi-
rection. For a given workload, mean and variance of service
time, and network latency, we derive an expression for the
delay-minimizing fraction of requests that a dispatcher should
redirect to remote clusters. Moreover, we compute the average
total response time including service- and waiting-times and
end-to-end network latency. In Section V, we then perform
a systematic performance analysis to estimate the optimal
dispatching ratios α∗ and to predict the expected average
request response time under varying parameters, such as the
server load, the end-to-end network latency and the average
request service time.

Fig. 1(c) illustrates the system model for WARD. We model
request arrivals at cluster i as a Poisson process with rate λi

and consider a single bottleneck tier modeled by a general
service time distribution having mean xi and variance σ2

i .
We consider a redirection algorithm in which a request is

redirected from cluster j to cluster i with probability αji,
i.e., we consider probabilistic redirection. Denote E[Ti] as the
expected total delay for servicing a request at cluster i, and
denote ∆ji as the one-way end-to-end network latency for a
request sent from cluster j to cluster i.

For the general case of a system of n cluster replicas,
denote A = {α11, . . . , αji, . . . , αnn} as a matrix of request
dispatching fractions, E[T] = {T1, . . . , Tn} as the vector
of all total delays at the bottleneck tier at a cluster and
D = {2∆11, . . . , ∆ji +∆ij , . . . , 2∆nn} as a matrix of round-
trip times from cluster i to cluster j and back. Furthermore,
denote L = {λ1, . . . , λn} as a vector of request arrival rates
at the cluster dispatchers, X = {x1, . . . , xn} as the average
service time, C = {c1, . . . , cn} as the vector of coefficient of
variation for the service times, with ci = σi/xi.

Lemma 1: The mean service time for the redirection policy
using a dispatching fraction A is given by:

E[T] = A ·X +
(A · L)X

2
(1 + C

2)

2(1 − (A · L)X)
+ A · D (3)

Proof: The total service time is composed of 3 durations:
(i) the network latency of transferring the request to and from
the remote cluster (ii) the queuing time at the cluster and (iii)
the service time at the cluster.

For symmetry reasons, in the following equations, we
attribute the “costs” to the receiving cluster i. First, we assume
that the network latency between the dispatcher and a local
cluster ∆ii = 0 and hence, network latency is incurred only
by requests dispatched to a remote cluster: αji(∆ji + ∆ij).

Second, consider the mean waiting time for a request in an
cluster queue before being serviced. In general, the waiting
time for for an M/G/1 queue, where ρ = λx is: ρx(1+c2)

2(1−ρ) .
For any cluster i, the arrival rate λ is the sum of the requests
that are dispatched from all cluster j to cluster i, i.e., λi =∑

j αjiλj . With this λ, the waiting time for a single cluster i
can be rewritten as:

(
∑

j αjiλj)x
2
i (1 + c2

i )

2(1 − (
∑

j αjiλj)xi)
.

Finally, service time for a request at cluster i is given by
αjixi. The addition of these 3 terms for a set of clusters yields
Equation (3).

From Equation (3), we can compute the optimal dispatching
ratios that minimize the service times over all requests. In
particular, let A = {α∗

11, . . . , α
∗

nn} denote the matrix of
optimal request dispatching ratios.

Proposition 1: Using E[T] defined in Equation (3), the
optimal dispatching ratios A

∗ are given by:

∂

∂α
(A · X +

(A · L)X
2
(1 + C

2)

2(1− (A · L)X)
+ A ·D) = 0 (4)

To solve Equation (4) for all αji, we use the following
constraints to reduce the number of unknowns. First, we
clearly have that

∑
j α∗

ji = 1. Second, λi ≥ λj =⇒ α∗

ji = 0
i.e., when considering 2 clusters with different λ, under steady-
state conditions, no requests will be dispatched from the
cluster with a smaller arrival rate to the cluster with a higher
arrival rate. Thus, as we show later in Section V, for a system
of two clusters, we can reduce the problem to one unknown,
α which is the fraction of requests served locally, which can
be solved by using Proposition 1.

The optimal dispatching ratios A
∗ can be used to predict the

average request service time for a system of cluster replicas.
Proposition 2: The expected request service time under

optimal dispatching ratios is given by:

E[T∗] = A
∗ · X +

(A∗ · L)X
2
(1 + C

2)

2(1 − (A∗ · L)X)
+ A

∗ ·D (5)

Proof: Equation (5) follows from Lemma 1 and by using
the optimal dispatching ratios from Equation (4).

V. NUMERICAL RESULTS

This section quantifies the performance benefits achieved by
QuID and WARD via an extensive numerical analysis.

A. QuID: Trace Driven Simulation

First, we explore the resource savings and QoS improve-
ments available due to QuID as compared to a static approach.
We also compare the performance of the QuID-online algo-
rithm against the optimal offline algorithm, namely QuID-
optimal to benchmark the amount of performance benefits
exploited by QuID-online.
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Fig. 2. Subfigure (a) shows the trace arrival pattern while (b) shows
the performance as characterized by number of servers used by a resource
allocation algorithm vs. 95%-ile response time.

We use a commercial trace as depicted in Fig. 2(a). The
trace, referred to as “EC trace” is a 24-hour trace from a
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large-scale E-Commerce site with a multi-tier architecture
as illustrated in Fig. 1(b)2. In the EC trace [10], each
request is classified as either static, dynamic, search or other.
Requests for dynamic pages are further classified as those
that are uncacheable versus those that were resolved by the
cache (cache hit) and those that were a cache miss. The
workload consists of 18% static requests, 40% that result in
a cache hit, 17% that result in a cache miss, 8% that are
uncacheable and 17% requests of other types. Each request
type incurs a varying amount of CPU demand on each cluster
tier, the details of which can be found in reference [38]. More
importantly, the cache miss and uncacheable requests incur
500 and 100 times more CPU demand than a cache hit request.
Moreover, the ratio of peak-to-mean requests over the entire
trace duration of 24 hours is 1.5 while the trace exhibits a
strong autocorrelation value of 0.99 at lags of 5 minutes. The
trace is regenerated through our simulator and each request’s
workload is generated by an exponentially distributed random
variable with mean demands per tier as calculated from the
original trace.

Through a trace-driven simulator based on YacSim [28], we
study the performance of QuID-online and compare it against
a static allocation policy. We consider a single bottleneck tier,
in particular the application server tier. The simulator models
servers according to a FSFS non-preemptive CPU schedule
and implements the QuID-online algorithm to migrate servers
in and out. In each experiment, the measurement interval, τ =
5 minutes and migration time, M = 1 minute.

Fig. 2(b) depicts the average number of servers against the
response times for the QuID-online algorithm along with a up-
per baseline provided by a static allocation policy and a lower
baseline as provided by the optimal policy, QuID-optimal.
Each point on the curve represents the result of a simulation for
a different target utilization µ, with measured utilization values
depicted next to each point. For example, the figure shows
that for a utilization of 0.66, QuID-online achieves a 95%-ile
response time of less than 5 seconds and requires 17 servers
on average. In contrast, static allocation requires 24 servers to
achieve the same response time. Hence, for this response-time
QoS target, QuID-online has reduced the required number of
servers by 29%. An alternative interpretation is that for a fixed
number of servers, QuID-online improves QoS as compared
to a static approach. For example, on using 20 servers, QuID-
online achieves a 95%-ile response time of 3.7 sec vs. 7.4 sec
for static allocation, a 50% reduction. Moreover, as data center
operators would likely be required to over-provision servers to
address unknown and highly variable workloads, the gains of
QuID-online as compared to a static approach may be even
more pronounced in practice.

Further, note that the performance of QuID-online as com-
pared to the optimal policy reveals that the same response
time of 5 seconds can be achieved by the optimal policy
by using only 12 servers. Hence, a further resource savings
of 21% is available in theory. However, we observe that
due to the assumptions made in solving the optimization

2This trace is not available in the public domain and for privacy concerns,
it has been scaled so that the depicted rates of Fig. 2(a) differ by a constant
factor from the actual trace.

problem associated with QuID-optimal, it would be impossible
to realize the complete gains of QuID-optimal in practice. In
particular, QuID-optimal differs from a realistic setup such as
our simulation model in the following: (a) it doesn’t model
session affinity; (b) it optimally schedules CPU time and; (c)
it divides an individual request across multiple servers.
B. WARD: Numerical Results

Next, we show that wide area redirection is able to optimize
inter-cluster performance characterized by total access delays
perceived by clients. Then, we experimentally establish the
higher tolerance of WARD to measurement errors in network
latencies than to errors in server load measurements. This
further verifies our hypothesis that redirection mechanisms
must obtain finer-granularity server load measurements, which
WARD is better-suited at given that it is implemented on
dispatchers that are co-located with local servers and are
connected via high-bandwidth links to the remote servers.

Using the system model developed in Section III, we
consider a system of 2 clusters with replicas having the same
average request service time x. Furthermore, we assume a
symmetric network with wide area latency between the two
clusters: ∆ = ∆12 = ∆21. Finally, we set λ2 = 0, which
satisfies λ1 > λ2 =⇒ α21 = 0, and denote λ := λ1 and
α∗ := α∗

11 for simplicity.
The dispatching ratio is computed based on Equation (3):
E[T ] = αx +

αλx2(1 + c2)

2(1 − αλx)
+

(1 − α)x +
(1 − α)λx2(1 + c2)

2(1 − (1 − α)λx)
+ 2(1− α)∆

(6)

Equation (6) is solved according to Proposition 1 to obtain
the optimal dispatching ratio α∗. Henceforth, we refer to
the term 1 − α∗ as the remote redirection ratio, i.e. the
fraction of requests dispatched remotely. Then, according to
Proposition 2, the expected total delay of the cluster system is
given by substituting α by the optimal ratio α∗ in Equation (6).

If not otherwise stated, we use the following default values:
x = 42.9 msec, σ = 40.1 msec, where these values were
obtained from our testbed and ∆ = 36 msec, which corre-
sponds to a speed-of-light latency for two clusters separated
by 6 time-zones at 45o latitude3. We will use ρ = λx to denote
the total load on all clusters. For clusters without redirection, ρ
corresponds to the server load on the bottleneck tier, whereas
WARD can split this load among the local and remote clusters.
To obtain a given value of ρ, the arrival rate λ will be scaled,
with x remaining fixed.

1) The case for wide-area redirection: First, we provide
evidence that wide area redirection is able to decrease the user-
perceived total delay. We calculate the total delay of WARD
using Equations (4) and (5) and compare it to the total delay
of a cluster that does not implement redirection. Fig. 3 shows
the total delay as a function of the end-to-end latency and
different system loads ρ.

For low loads (ρ = 0.5), improvements are achieved only
when the end-to-end latency ∆ ≤ 25 msec. For higher

3Given the circumference of earth at 45o latitude as 28335 km and the
speed-of-light through optical-fiber as 205 km/sec, the one-way latency across
1 time-zone can be calculated as: 28335/(205 ∗ 24) ≈ 6 msec.
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Fig. 4. WARD performance under network measurement errors. A value of
0 on the x-axis corresponds to perfect end-to-end latency information. The
server load is set to ρ = 0.95.

latencies, the redirection cost exceeds the processing time so
that all requests are serviced locally. However, a significant
improvement is achievable for higher loads. For a moderate
load of ρ = 0.75 and ∆ < 50 msec, the total delay is reduced
from 0.16 sec to 0.13 sec using WARD, an improvement of
18%. For a heavily loaded system with ρ = 0.9 and when
∆ < 50 msec, the total delay is reduced from 0.38 sec without
redirection to 0.15 sec using WARD, an improvement of 60%.
Moreover, for loads ρ > 0.9, still higher improvements are
predicted by the model.

2) Susceptibility to Measurement Errors: Next, we estab-
lish the fact that the performance benefits out of a wide-
area redirection policy can be exploited only when the server
utilization values are available at a very fine granularity. In
contrast, network latencies can be quite coarse grained without
any performance penalties out of making the wrong decision.
For establishing this claim, we study the performance impact
due to measurement errors in network latency ∆ and server
load ρ. We quantify the performance impact in terms of error
tolerance defined as the percentage error ±ε that increases the
total delay by at most 2%.

First, we study the impact of network latency errors as
follows. Let ∆ denote the true inter-cluster network latency
and ∆̂ = ∆+ δ the measured value, and D̂ the corresponding
round-trip time matrix. The dispatcher calculates the dispatch-
ing ratios replacing D by D̂ in Equation (3).

For the calculation of average total delay, Equation (5) is
used with the true latency values D. The effects of measure-
ment error in network latency on the remote redirection ratio
(1 − α) and the resulting average request response time are
shown in Fig. 4. Each curve denotes a different (true) latency
∆, and the x-axis denotes the error δ, in percent of ∆.

Fig. 4(a) shows that the redirection ratio changes more for
negative δ than for the corresponding positive δ. The reason
is that the redirection ratio does not grow linearly with the

end-to-end latency. As a consequence of the asymmetry, the
total delay increases more for negative δ, as shown in Fig. 4(b).
Note, however, that the response times are not highly sensitive
to latency measurement errors and the the error tolerance is
quite high at ±20%.

Likewise, we consider a scenario when the dispatcher has
inaccurate server load measurements, e.g., due to delays in
receiving the measurements. In this scenario, the measured
load at the dispatcher is given by ρ̂ = λ̂x, with λ̂ =
λ + ε (where ε is in percent of the correct load ρ) and the
corresponding measured arrival rate by L̂. The network latency
is set to ∆ = 500 msec.

First, consider the case of measurement error ε > 0, when
the dispatcher assumes the server load to be higher than what
it is and hence it redirects more requests than the optimal.
Fig. 5(a) shows that the remote redirection ratio increases with
increasing measurement errors. These extra redirections incur
additional network latencies and hence the total delay also
increases linearly in Fig. 5(b). In particular, for ρ ≥ 0.9, the
error tolerance is +1.5%. Next, consider negative ε, when the
dispatcher assumes the local server load to be less than the
actual value and hence redirects pessimistically. As a result,
the load on the local server incurs greater processing times
at the local cluster. As expected, Fig. 5(b) shows that at high
server loads ρ ≥ 0.9, the total delay is much more sensitive
for negative ε with an error tolerance of only −0.5%.

Thus, comparing the impact of latency and server measure-
ment errors, the error tolerance for latency is high at ±20%
while that for server load is an order of magnitude lower
at +1.5,−0.5%. We thus conclude that greater accuracy is
needed in server load measurements than network latency.

Since server-side redirection mechanisms can obtain more
fine-grained server load information at lower overheads, this
verifies their superiority in efficiently load-balancing requests
for dynamic content applications than client-side mechanisms:
First, client-side redirection policies when implemented at
clients or DNS servers may not have access to high-bandwidth
links to the servers and; Second, client-side redirection as
implemented at proxies near clients (e.g., Akamai) may have
high-bandwidth access links, however, their overhead for ob-
taining the server load information is much higher, given the
much larger number of client-side dispatchers than server-side
ones. Consider, the following: Say, the number of clusters is
n and thus in WARD, there are n server-side dispatchers.
If the total number of servers across all clusters in the
tier implementing WARD is M , where M > n, then the
complexity of information exchanged in WARD is O(nM).
In contrast, consider a client-side redirection mechanism with
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Fig. 5. WARD performance under server load measurement errors.
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one dispatcher per client-side proxy for a total of N client-side
proxies or dispatchers which yields a complexity of O(NM).
Given that the number of client-side proxies is typically much
larger than the number of cluster replicas, the complexity is
much less for server-side redirection mechanisms4.

VI. EXPERIMENTAL EVALUATION

In this section, we first describe our testbed implementation
of a multi-tiered e-commerce site. Using synthetic traces
generated to follow the TPC-W benchmark for web workload,
we validate the following interesting issues. First, we validate
that WARD’s per-query redirection algorithm performs better
than a set of strawman algorithms. Second, we validate that
WARD’s analytical model using M/G/1 queues as developed
in Section IV does match the implementation closely. Third,
we provide a comparative performance study of WARD’s per-
query redirection algorithm against the probabilistic algorithm.
Finally, we validate the cluster decision algorithm by com-
paring the performance of QuID and WARD under varying
workload scenarios.

A. Implementation

We use the experiment set up shown in Fig. 1(b) consist-
ing of two clusters. Traffic arrives at only the local cluster
whereas the workload of the remote cluster is solely created
by dispatched requests. We expect such zero-load conditions
on remote data centers several time-zones away due to the
time-of-day effects. The number of servers in the web-tier
in both the clusters is statically allocated such that this tier
doesn’t ever become the bottleneck. We implement our wide-
area redirection as well as server migration algorithms on the
database tier.

The dispatcher maintains consistency across the currently
active servers in the database tier by two means: maintaining
an identical total ordering of writes at all database servers, and
a read-one write-all dispatching strategy, where the queries
that involve updates to the database tables are sent to all
the database servers. More details on the consistency model
and implementation can be found in references [36] and [8].
Moreover, to bring the database tables of newly migrated
servers to the same consistency level, we use the following
algorithm: (a) when a server is migrated out of the tier,
the server first waits in a “warm down” phase, where all
the currently running queries are completed, after which its
daemon processes are stopped and the machine halted. The
dispatcher then maintains a log of the database writes that
happen during this server’s absentia; (b) when a server is
migrated in to the tier, the dispatcher sends the missing write
queries to the server in a “warm up” phase and new queries
are sent once the server is consistent with the entire tier.

Each cluster is implemented with Apache as the web tier,
PHP as the application tier and MySQL as the database tier.
All the servers used in our experiments are Intel Pentium
IV 2.0 GHz processor machines running Linux 2.4.18 kernel

4Assuming that a client-side redirection scheme were to install one proxy
per Autonomous System in the world, then N can be expected to be around
39,000 [5]. In contrast, typical cluster grids such as Google consist of around
60 clusters.

with 512 MB SDRAM. In all our experiments, we set the
measurement interval τ for obtaining the CPU loads and
latencies per server as 10 seconds. Using reported data on
time needed for booting the Linux operating system as well
as that observed on our testbed machines, we set the boot time
Mboot at 0.5 minutes.

For our experimental workload, we utilize the TPC-W
benchmark [7] which represents the workload characterizing
an online bookstore site. Specifically, our client emulator
generates the browsing mix consisting of 95% read queries
and 5% writes. We also performed experiments using the other
two mixes proposed in TPC-W, the shopping and ordering
mixes which have higher percentage of writes and the results
followed the same trend as with the browsing mix.

B. WARD Delay-Load Curve

Since the dispatcher is implemented in front of the database
tier, we next present the offline technique to configure the
redirection policy with information about expected query
response time under varying database CPU loads. In an offline
experiment, we measure the response time as a function of
CPU load, a key input to the per-query redirection policy. We
use one cluster with access to one local database server. The
execution time for a query depends on the number and type
of other queries executing at the same time on the database
server, which can be abstracted as the workload entering
the system. Hence, we vary the CPU load on the database
server by increasing the number of clients. In each case, we
measure the mean execution time for each of the 30 read-only
MySQL queries. The resulting delay-load curve as illustrated
in Fig. 6(a) is then used in the per-query redirection policy.

C. WARD Performance Evaluation

Using our experimental test bed, we first validate the
efficacy of WARD in improving the cluster performance owing
to its ability to perform a per-query redirection while taking
both server loads and network latencies in to account. In this
experiment, we use a set up in which the local cluster’s web
tier is over-provisioned with servers such that it never becomes
the bottleneck. Both the local and remote clusters have 1 server
each at their database tier. Requests only arrive at the local
cluster and after being processed at the web tier, their queries
may either be processed at the local database tier or redirected
to the remote database tier.

We compare the performance of WARD against the fol-
lowing 4 different strawman algorithms: (1) No Redirection
where all queries are processed locally; (2) Latency Only
where queries are forwarded to the server with the least
round-trip time as measured in the last measurement interval;
(3) Server Only where queries are forwarded to the server
with the least CPU load and hence which can be expected
to process the query the fastest; (4) Round Robin where
queries are forwarded in a round-robin fashion between the
local and remote database servers. We refer to the last three
algorithms that involve redirection of queries collectively as
the redirection strawman algorithms.

Fig. 6(b),(c) shows the performance achieved using a trace
generated using the browsing mix of TPC-W consisting of 100
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Fig. 6. Subfigure (a) shows the WARD delay-load profile and subfigures (b) and (c) show the performance of WARD against strawman algorithms.

client sessions with mean inter-request arrival time per session
being 4 seconds. First, Fig. 6(b) shows that the performance of
all algorithms that redirect queries away from the local server
is better than the No Redirection algorithm. This highlights the
fact that for this workload the local database server is heavily
loaded and hence it is of benefit to redirect a part of its load
to the remote server. However, the performance of WARD
is much better compared to all the strawman algorithms,
thereby proving its superiority. Infact, as seen from Fig. 6(c),
WARD achieves a better performance while redirecting the
least fraction of queries to the remote server. This is on
account of the better redirection decision made by WARD on
a per-query basis by accounting for both the server loads and
latencies.

Second, the Latency Only algorithm achieves the worst
performance amongst the redirection strawman algorithms.
This behavior further validates our hypothesis that for a
dynamic content web site such as ours, the server loads are
more important for forwarding decisions than the latencies.
However, even the Server Only algorithm’s performance be-
comes worse compared to WARD with increasing inter-cluster
latencies. This is again an expected behavior since the Server
Only algorithm doesn’t take the latencies in to account in its
redirection decision and hence is unable to make the correct
redirection decision per-query. In contrast, WARD is designed
to take both the server loads and latencies in to account in its
redirection decision.

Third, the performance of all the redirection algorithms
(WARD as well as the strawman redirection algorithms) de-
grades with increasing inter-cluster latencies since the latency
overhead of redirection is higher per-query. Eventually, the
cost of redirecting even a single query can be expected to
outweigh the benefit of having a remote server with lower CPU
load. Hence, the performance of the Latency Only (Round
Robin) algorithm becomes worse than not redirecting at all
once the end-to-end latencies are as high as 270 (375) mil-
liseconds. In contrast, WARD can support having the remote
cluster the furthest away than all the strawman algorithms.
D. Comparing WARD Analytical Model with Redirection Al-
gorithms

We validate the analytical model developed in Section IV
by comparing against the WARD redirection policies on our
testbed. Since the bottleneck tier is the database tier, we com-
pare the redirection ratios and response time for processing
queries at this tier under the model as well as on our testbed.
For the model, we use Equation (6) from Section V with

x = 42.9 msec and σ = 40.1 msec, as measured on an
unloaded database server in our testbed.

First, Fig. 7(a) compares the mean query response time
of the model and the implementation on a single cluster
as a function of the server load ρ. Observe that the model
matches the measured query response time for ρ < 0.7
within ±10%. Beyond this load, the model deviates from
the implementation because: (1) our M/G/1 model makes the
simplifying assumption that the arrival process of queries at the
database tier is independent which may not hold true given the
correlation across queries generated for the same web request;
(2) our M/G/1 model doesn’t take read-write conflicts into
account due to which queries may take longer to process than
what the model predicts and; (3) at high loads there are more
queries and thereby greater number of conflicts.

Next, we compare the model with the two implemented
redirection policies: (1) probabilistic, and (2) per-query. The
per-query policy receives the CPU load measurements every
5 seconds and we set the inter-cluster latency to be 25
milliseconds in all the experiments.

Fig. 7(b) and (c) compare the remote redirection ratio and
query response time as a function of the system load. The
redirection ratios of the model and the probabilistic policy are
close because this policy bases itself upon the optimal values
predicted by the model. On the other hand, the per-query
policy begins redirecting earlier and redirects more queries
until ρ < 0.5 compared to both the model and probabilistic
policy. The reason for this behavior is that heavy queries are
more sensitive to load as shown in Fig. 6(a), and hence it is
of increasing value to redirect them at comparatively lower
system loads. Hence the per-query policy performs better
and exhibits a lower mean response time for ρ < 0.5 in
Fig. 7(c). When ρ > 0.5, the probabilistic policy redirects
more queries than the per-query policy and hence yields lower
response times. We attribute this difference to the fact that the
the measurement interval of 5 sec is too coarse grained to
capture the small oscillations in CPU load. A better response
time can be expected for smaller measurement intervals, but
would require that an optimal tradeoff be established between
measurement accuracy and measurement overhead.

Thus, we derive two important conclusions from this experi-
ment. First, that despite its simplifying assumptions, the M/G/1
model does match the implementation closely and hence the
conclusions derived by using the model in Section V should
be expected to hold true in real world implementations as well.
Second, the WARD per-query redirection algorithm performs
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Fig. 7. WARD Analytical Model Validation
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(a) Session arrivals
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(b) Autocorrelation
Fig. 8. Traces with different peak-to-mean variations.

better than the probabilistic algorithm under low load scenarios
and its performance under high load scenarios can be improved
by reducing the measurement interval.

E. Justifying Cluster Decision Algorithm

Next, via experiments on our test bed, we study the con-
ditions under which server migration and request redirection
achieve their best performance. Infact, we validate experimen-
tally the cluster decision algorithm as proposed in Section III.

1) Trace Generation: We generate a set of traces with
different burst size and duration by keeping the ‘mean’ number
of sessions the same (80 sessions) while varying the ‘peak’
session arrivals as shown in Fig. 8(a). This yields traces with
different peak-to-mean ratio for arrivals and henceforth, we
refer to each trace by its respective peak-to-mean ratio. Each
trace is of duration 6 minutes, with a new set of clients arriving
after every 20 seconds. Furthermore, in each trace, the inter-
request arrival time between two requests of a client session
is 4 seconds.

We quantify the burstiness of each trace by its autocorrela-
tion coefficient Â(n, m) computed by considering the session
arrivals over the last n time units at a lag equal to the migration
time of m time units. In particular, we use the value of n
and m set as 0.5 minutes. Fig. 8(b) plots the autocorrelation
coefficient at this lag computed at different points in time for
a trace’s lifetime. Note that the trace with the lowest peak-to-
mean ratio (1.35) has the same value for its autocorrelation
coefficient (0.25) throughout the trace. In contrast, traces
with higher peak-to-mean ratio begin exhibiting drops in their
autocorrelation coefficient around the time of arrival of the
arrival burst. For instance, in the trace with peak-to-mean
ratio of 2.29 where the burst arrives at 3.3 minutes, the
autocorrelation coefficient experiences a drop at 3.6 minutes.

2) Performance Metric: Since the purpose of this exper-
iment is to compare QuID and WARD, we need to define
a performance metric to quantify the performance of these

algorithms. To assist in defining the performance metric, we
select a simple strawman scenario Static allocation in which
the entire workload is processed locally while statically vary-
ing the number of database servers as [1-4]. Thus, we define
the performance metric for QuID (or WARD) as the percentage
reduction in response time compared to static allocation while
using the same number of servers as static allocation. We
calculate the effective total number of database servers used
by WARD as: nlocal +

∑nremote

i=1 li, where nlocal and nremote

are the number of servers in the local and remote clusters
respectively and li is the CPU utilization on a remote server
i that is on account of serving redirected queries only.

3) Testbed setup: We setup the testbed to consist of two
clusters, with the local cluster’s database tier consisting of
1 server while the remote cluster’s database tier consists of
3 servers. Moreover, the local cluster has access to a free
pool consisting of 3 more database servers from which QuID
can potentially allocate additional servers at the local database
tier. We simulate the inter-cluster latency as 100 milliseconds
and the target CPU utilization µ for QuID at 40%. First, we
establish the operating regime of our different traces through
an experiment in which the number of servers on the local
database tier is statically allocated to 1 without any redirection
to the remote cluster. Fig. 9(a) shows that the traces with
higher peak-to-mean ratios incur lower CPU loads on the
database tier on average. However, as expected, the CPU does
bottleneck towards the latter half of these traces owing to the
sudden arrival of users (figure not shown).

To validate the cluster decision algorithm, we design ex-
periments with different autocorrelation thresholds θ (see
Section III-C). In one experiment, we set θ = 0.02 for all
traces so that the cluster decision algorithm only uses QuID
to migrate additional servers (and never uses WARD) This
is on account of the fact that the autocorrelation coefficients
for all the traces is more than 0.02 at all times as shown in
Fig. 8(b). In another experiment, we set θ = 0.29 so that
the cluster decision algorithm only uses WARD to redirect
queries remotely. Again this is on account of autocorrelation
of all traces being upper bounded by 0.29 at all times. We
refer to these experiments as QuID-always and WARD-always
in the rest of this section.

4) Performance: Fig. 9(b) and Fig. 9(c) depict the aver-
age response time achieved under QuID-always and WARD-
always respectively under the different traces. In both these fig-
ures, a line corresponds to the performance of static allocation
over a trace when the number of servers is varied. As expected,
the average response time decreases on increasing the number
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Fig. 9. Performance comparison of QuID-always and WARD-always.

of servers in the local database-tier. In both these figures, we
also plot the point corresponding to the performance achieved
by using QuID-always (or WARD-always) over a trace. Note
that the points corresponding to QuID or WARD have been
made larger and filled to distinguish from those representing
static allocation. Thus, if the point corresponding to QuID-
always appears below the line for static allocation, this is
indicative of QuID achieving a better performance i.e., a lower
response time than static allocation while using the same
number of servers. Infact, we compute the respective perfor-
mance gains of QuID-always and WARD-always compared
with static allocation as shown in Fig. 9(d).

Note that with an increasing peak-to-mean ratio, QuID is
able to extract increased performance gains with the largest
gain exhibited for trace with peak-to-mean ratio of 2.89. How-
ever, as the traces start varying over shorter burst durations,
they are also more difficult for the dynamic algorithm to track
due to their more rapidly decaying autocorrelation functions.
In particular, for the trace with peak-to-mean ratio of 4.75, the
auto-correlation falls very low to 0.02 at the burst arrival time
(see Fig. 8(b)), and hence QuID doesn’t yield any resource
savings. Further, observe that at the other end of the spectrum
there is no performance gain when traces such as the one
with peak-to-mean ratio of 1.36 don’t exhibit enough variation.
In such a scenario, the negative resource saving is indicative
of the performance overhead paid while migrating servers in.
Infact, the performance of QuID does approach that of static
allocation, when we reduce the overhead dictated by Mboot to
values lower than 0.5 minutes.

Thus, if a web cluster experiences demand surges at time
scales of minutes, QuID can track the widely varying load
provided that the autocorrelation values are still relatively
high at lags corresponding to the key time scales of the
system, namely the server migration time. Furthermore, in
our experiments with QuID, we find that the time needed
to apply queries to a newly migrated server Mquery is less
than 1 seconds irrespective of the traces and thus the total
migration time is governed mainly by the booting time. Similar
conclusions are derived on using the shopping or ordering
mix of TPC-W i.e., the booting time (30 seconds) is always
much greater than the time needed to re-apply the queries (1-2
seconds). Although, we can expect the total time for applying
queries to be higher in a scenario where a server has been
taken away from the cluster for a very large time period such
that a large number of queries need to be applied to bring it
up-to-date. However, in our experiments, a server was never
taken out of the cluster for more than a few minutes and hence

the low query application time5.
In contrast, observe that for traces that don’t exhibit enough

variation (high autocorrelation coefficients), any performance
gain out of redirecting queries away are offset heavily by
the inter-cluster latencies and thereby redirection via WARD
performs worse when compared to server migration via QuID.
However, the cluster decision algorithm’s hypothesis to use
WARD in scenarios with low autocorrelation coefficients
is verified on observing that the performance via WARD
(+10.38%) is better than QuID (-0.7%) in the trace with peak-
to-mean ratio of 4.75 whose autocorrelation coefficient falls
to as low as 0.02 at times. Thus, overall QuID seems to
perform better for cases when the autocorrelation coefficient
at lag equal to migration time is larger than 0.02 at all times.
In other words, we experimentally establish the value of the
autocorrelation threshold θ to be 0.02 for the workload and
setup used in this experiment.

To summarize, this experiment validates the cluster de-
cision algorithm. Dynamic server allocation through QuID
achieves better performance gains when the workload has
variations over durations on the same order of magnitude
as server migration time. In contrast, wide-area redirection
through WARD achieves higher performance gains than QuID
when the workload has bursts over duration smaller than the
migration time-scales.

VII. RELATED WORK

Approaches to minimize web access times can be separated
into different groups: resource vs. request management and,
for the latter, client-side vs server-side redirection. In lieu
of this classification, QuID and WARD provide resource and
request management respectively and WARD is a server-side
redirection policy.

A number of related approaches have been proposed to
address the performance limitation of static server allocation
policies in references [9], [22]. Each offers a notion of utility
computing where resources can be acquired and released when
and where they are needed. Such architectures can be classified
as employing shared server utility or full server utility models.
With the shared server utility model, many services share a
server at a time, whereas with the full server utility model,
each server offers one service at a time.

Shared server utility models [22], [42], [12], [46], [43]
consider a fine-grained resource allocation problem where a

5While this does lead to an interesting observation that server migration
time is also dependent on the time for which the server has been out of the
cluster, we consider such questions as out-of-the-scope primarily due to lack
of realistic workloads against which we could investigate this further.
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server’s physical resources of CPU, disk and memory can be
divided in to finer virtual resources. These models are geared
towards achieving higher performance within a physical server
by optimally mapping the application instances to virtual
resources. For instance, in MUSE [22] all services are run con-
currently on all servers in a cluster, and a pricing/optimization
model is used to determine the fraction of CPU resources
allocated to each service on each server. However, shared
server utility models rely on isolation of the virtual resources
from each other. Owing to the lack of such partitioning support
in the common operating systems, this problem was addressed
by using cluster reserves in reference [12].

While shared server utility models can achieve more fine-
grained concurrency, each server can only be used to host
processes that are part of the same content provider. This is
on account of the security implications involved in sharing
content from different providers on the same physical server.
This limitation is addressed by full server utility models as
proposed in our earlier work [38] and realized in many prod-
ucts such as HP’s Utility Data Center [26], IBM’s Oceano [9]
and Amazon’s Elastic Compute Cloud (EC2) [2]. In particular,
Amazon EC2 [2] provides a resizeable hosting environment
that can be purchased and managed over the web. These prod-
ucts are representative of the changing demands of web content
providers who have come to realize the benefits in outsourcing
their hosting to data centers instead of managing it in-house,
primarily on account of the reduced maintenance costs. On the
other hand, data centers can benefit from statistical multiplex-
ing of their resources across multiple applications. While the
online and optimal dynamic resource allocation algorithms of
QuID were proposed in our earlier work [38], this paper also
provides a proof-of-concept implementation of QuID over an
e-commerce web site hosted on a linux cluster. Furthermore,
we note that the issue of web server QoS has received a great
deal of attention in contexts such as web server admission
control [17], [30], [34], service differentiation across different
types of sessions [45], [35], [40], operating system support
[14], [19] and networking support. Such techniques represent
mechanisms at the request and session time scale whereas
QuID operates at time scales of minutes.

Next, in the context of redirection mechanisms, a significant
body of research has focused on client-side mechanisms such
as request redirection in CDNs [44], [29], server selection
techniques [21], [25], caching [31], mirroring, and mirror
placement [27], [23]. These techniques are based on the
premise that the network is the primary bottleneck. However,
we have shown that this assumption is not applicable to dy-
namic content owing to the higher server processing times and
the lower tolerance to server measurement errors exhibited by
dynamic content. Thus, while such schemes can be applied to
finding the best initial cluster, WARD’s server-side redirection
is essential to jointly incorporate server and network latencies.

A combination of client-side and server-side redirection is
also possible and beneficial if the bottleneck is not clearly
identified or varying over time. Such a combined architecture
is presented in reference [20]. Their server-side redirection
mechanism may redirect entire web requests using HTTP-
redirection if the CPU utilization exceeds a certain threshold.

While they conclude that server-side redirection should be
used selectively, we see server-side redirection as a fundamen-
tal mechanism for current and future cluster architectures. Our
redirection mechanism is not threshold-based, but is able to
optimize cluster response times for all CPU utilization values.

In contrast to approaches in references [44], [29], [21],
[25], [31], [27], [23], that are designed for static content,
other approaches such as those in references [18] or Akamai’s
EdgeSuite [1] address server selection for dynamic content via
caching of dynamic fragments. Caching can occur at either
the client-side with expiration times set using cookies or at
the server-side (on a reverse proxy server) with cached pages
being expired on receiving database update queries. However,
these solutions either result in stale data being served to the
clients or add to the complexity of site development and
management. Nevertheless, caching is complementary to the
solution adopted by WARD. In cases where a request is not
resolved from the cache, the request can be forwarded to a
server (local or remote) that can process it the earliest.

Though QuID and WARD were proposed in our earlier
work [38] and [37] respectively, this paper proposes a novel
cluster decision algorithm that combines the two algorithms to
jointly optimize cluster performance. Further, we experimen-
tally validate the performance achieved by combining QuID
and WARD over a testbed hosting an e-commerce web site.

While QuID’s online algorithm and WARD’s analytical
model are designed for multi-tiered clusters, they model each
tier in isolation. In this regards, our work can benefit from
models that consider inter-tier effects such as caching of
one tier affecting another tier or bottlenecks shifting from
one tier to another as proposed in [41]. Moreover, we only
consider the resources of server CPU and network bandwidth
in our framework. Other approaches [15], [24] have modeled
workload variations by considering additional resources such
as disk demands along with CPU. Further, this paper solves
the problem of resource allocation with respect to a cluster
tier when the resources can be obtained from a shared pool.
However, in full server utility data centers, it is likely that
resources need to be transferred from one application to
another. Infact, this problem is addressed in [16] where the
authors frame the problem as a global optimization problem.

VIII. CONCLUSIONS

In this paper, we propose a suite of algorithms that en-
sure high performance to dynamic content applications even
during overload conditions such as those during time-of-day
effects or flash crowd events. The cluster performance as
characterized by average response time effected on clients
and average server utilization is optimized through two mech-
anisms. The first mechanism, QuID optimizes performance
within a cluster by dynamically allocating servers on-demand
while the second, WARD multiplexes resources across clusters
by load-balancing requests across the clusters. We also pro-
posed a cluster decision algorithm to decide the conditions
under which QuID or WARD must be used to improve
the cluster performance. Through a combination of trace-
driven simulation and analytical models, we have shown the
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performance savings inherent in these algorithms. Moreover,
through a testbed implementation of the algorithms on an
online-bookstore we also explored the time-scales at which
the two algorithms should be used- QuID is well-suited for
large time-scale variations that occur over periods larger than
a minute while WARD can be used to handle bursts at shorter
time-scales.
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