Distance-1 Constrained Channel Assignment in Single Radio Wireless Mesh Networks

Ehsan Aryafar

Rice University (Houston, Texas, USA) Omer Gurewitz Ben Gurion University (Beer Sheva, Israel) Edward Knightly Rice University (Houston, Texas, USA)

Motivation: Mesh Networks

• City-wide mesh network deployments

- Two-Tier Mesh Architecture
 - Access tier clients (homes and mobiles) to mesh nodes
 - Backhaul tier mesh nodes wirelessly hop to gateway
 - Gateways Limited number of nodes connected to wired internet

System Model

- Two-tier mesh architecture
- Single half-duplex Radio for backhaul-tier
- K orthogonal frequency channels
 - Single Radio for access tier
 - Multiple channels for backhaul tier
- Predetermined data forwarding links by an existing routing protocol
- Bidirectional links selected by the routing protocol

Objective

- Low channel utilization and high throughput imbalance are well known problems in single channel mesh
- Our objective: Design a single radio channel allocation architecture that maintains high channel utilization while keeping fair bandwidth allocation between flows

State of the art:

Transceiver based assignment schemes

- Transceivers dynamically select channel for data transmission based on local channel Information
 - Example: DCA'00, MMAC'04, AMCP'06, ...
 - Considered by 802.11s multi-channel mesh standard proposals

Why Change?

why mess with it?

Inherent limitations within transceiver based channel assignment schemes:

- Inaccurate channel availability:
 - Corrupted reception of control packets due to collisions
 - Loss of reception when tuned to a different channel

Why Change?

why mess with it?

Inherent limitations within transceiver based channel assignment schemes:

- Inaccurate channel availability:
 - Corrupted reception of control packets due to collisions
 - Loss of reception when tuned to a different channel
- Inconsistent topology seen by neighboring nodes
 - Unique to multihop, as in single hop all nodes are within transmission range

Why Change?

why mess with it?

Inherent limitations within transceiver based channel assignment schemes:

- Inaccurate channel availability:
 - Corrupted reception of control packets due to collisions
 - Loss of reception when tuned to a different channel
- Inconsistent topology seen by neighboring nodes
 - Unique to multihop, as in single hop all nodes are within transmission range

Local greedy channel selection can lead to poor
⇒ channel utilization with severe throughput imbalance between flows

Why Change?

why mess with it?

Inherent limitations within transceiver based channel assignment schemes:

- Inaccurate channel availability:
 - Corrupted reception of control packets due to collisions
 - Loss of reception when tuned to a different channel
- Inconsistent topology seen by neighboring nodes
 - Unique to multihop, as in single hop all nodes are within transmission range

⇒ In contrast to prior work we used one of the nodes as a central point to compute static channel assignment

Channel Assignment Protocol

- A Network Controller allocates channels to all active links
 - This procedure is run only once during network setup and is updated based on deployment of new nodes or node failures.
- Each active link is notified of:
 - the channel assigned to the link
 - the number of interfering links
- Medium access algorithm mechanism which coordinates between each sender and receiver to schedule transmission

Channel Assignment Objective

Assigning different channels to any two links that can be active at the same time only if their transmission occurs on two different channels

Remark: With this assignment any set of links that form a matching can be active at the same time

 Define Distance-1 as the distance between links that do not share a common node but still interfere with each other, e.g., links *u-x* and *y-z* are Distance-1 apart

Distance-1 Edge Coloring Problem

 Definition (D1EC Problem): Given a physical graph G and a selected subgraph A ∈ G, the distance-1 edge coloring problem seeks a mapping of colors to links in A such that any two links that are at distance-1 with respect to G are assigned different colors.

Minimum required number of channels

 Theorem 1: The decision problem whether k colors are sufficient to have a valid D1EC is NPcomplete

Basic proof idea: Reduction from graph K colorability.

Upper bounds for typical topologies

• Theorem 3 : For a geometric graph of maximum degree Δ , K_{D1EC} is upper bounded by 18 X (Δ + 1)

Basic proof idea:

 Physical graph division into cells
Assign channel pools to each cell
Reuse pools at appropriate distances
Good bound depends on the shape and size of cell

X-axis

Upper bounds for typical topologies

 Theorem 4: minimum number of colors to have a valid D1EC of links in typical grid topologies such as Δ = 3,4,6,8 is upper bounded by 3,4,7,10, respectively

Minimum required number of channels exceeds the number of available channels

- Interference-free links can communicate whenever sender and receiver pairs are available
- Interference on interfering links should be balanced

Channel Assignment Algorithm for MESH Network

• Basic Algorithm Steps:

- Visiting nodes vs. edges
- Reserve interference-free links for gateway nodes
- Greedy assignment for all links

Theorem 6: Under geometric graph model, if the number of channels is *C1* times the number of channels needed to have a valid D1EC coloring the suggested algorithm guaranty to find a conflict free coloring

Common Channel Reference MAC

- Two common problems in Multi-Channel MAC protocols
 - Contaminated channel availability data base
 - Mutual deafness deadlock
- Basic MAC properties:
 - Separate control channel
 - Use information provided by network controller for medium access

Simulation Results: Setup

- Setup:
 - NS-2 Simulator
 - Rice TFA topology + Grid
 - Number of channels 1 to 9
 - 25 flows, CBR over UDP
 - Switching delay, 80 µsec
 - Routing: Shortest Path
 - Competitors:
 - AMCP: Leading scheme
 - One channel per gateway 802.11
- Metric
 - Aggregate Throughput (pkt/sec)
 - Per flow Throughput

Rice TFA Topology

Simulation Results: Aggregate Upload

- Maximum throughput of a link in isolation = 184 pkt/sec
- Maximum achieved throughput = 150 pkt/sec

Simulation Results: Aggregate Upload

- D1C-CA efficiently utilizes additional increase in number of channels
- Packet selection schemes do not efficiently utilize additional increase in channels and saturate with small channels
- 802.11: High interference within each subnetwork

Simulation Results: Aggregate download

- Gateway node becomes heavy bottleneck for download in AMCP
- Two channels are sufficient to guarantee a high performance in our scheme due to gateway bottleneck removal

Summary

- Introduced and investigated distance-1 channel assignment coloring problem
- Designed an efficient channel assignment algorithm for mesh networks based on D1EC
- Designed a random access MAC protocol that exploits the channel assignment

Thank You

Questions

BACKUP

Motivation

Single-channel \Rightarrow Link interference \Rightarrow Low channel utilization and high throughput imbalance e.g., Garreto05, Garreto06

IEEE 802.11 supports multiple channels e.g., 802.11a – 12 orthogonal channels , 802.11b – 3 orthogonal channels

In contrast to prior work

We propose quasi-static link based channel assignment that minimizes interference among links

 The gateway node has global information about network topology and can be used as a central point to compute channel assignment

Minimum needed number of channels

• Theorem 1: The decision problem whether k colors are sufficient to have a valid D1EC is NP-complete

Basic proof idea: Reduction from graph K colorability: For every graph H, we construct another graph G such that H is K-colorable if and only if G has a D1EC with K colors.

- Construction of G from H: Corresponding of each vertex v of degree d in H, we put a copy C_v of T_{K,d} in G. Each head of C_v corresponds to one of the edges incident to v
- If two vertices u and v in H are joined by an edge e, their corresponding heads in Cu and Cv are connected through e in the resulting graph G

Upper bounds on K_{D1EC}: Geometric Graphs

- Geometric Graph Model: All nodes have the same transmission and interference range
- Theorem 3 : For a geometric graph of maximum degree Δ, K_{D1EC} is upper bounded by 18 X (Δ + 1)

Basic proof idea:

- 1: Physical graph division into cells
- 2: Assign channel pools to each cell
- 3: Reuse pools at appropriate distances
- 4: Good bound depends on the shape and size of cell

X-axis

Preview: Context

- Channel assignment in multi-channel wireless networks can increase achievable throughputs
- Multi-channel, multi-hop wireless mesh networks with single radio for backhaul tier
- Channel assignment: For each node, which channel should we operate at any given point in time?

Algorithm Performance Analysis

- Theorem 6: Under geometric graph model, algorithm D1C-CA needs at most C₁. OPT (K_{D1EC}) channels for all links to have a valid D1EC coloring
 - OPT (K_{D1EC}) : Minimum number of channels used by an optimum algorithm
- Theorem 7: Under geometric graph model, algorithm D1C-CA's maximum contention degree is at most C₂. OPT_{min (Co)} as $\Delta \rightarrow \infty$
 - OPT_{min (Co)}: Minimum contention degree found by an optimal algorithm
 - C₂ depends on the number of available channels

Algorithm Performance Analysis

- Two main properties of the algorithm that provide constant approximation:
 - Looking at nodes instead of edges
 - Greedy channel assignment behavior

Conclusion: Maximum number of nodes bounded in a circle of radius 3R, provides an upper bound on the number of charmels sed for our greed algorithm

Algorithm Performance Analysis

Definition: An **independent set** is a set of vertices in a graph no two of which are adjacent.

Simulation Results: Per-flow Throughput

- Same performance irrespective of topology and number of channels
- Starvation in 802.11 with fully backlogged flows
- Sufficient number of channels guarantees minimum rate in other schemes
- With insufficient channels starvation may occur in other schemes

Simulation Results: Effect of Traffic Load

- Same performance irrespective of number of channels
- With small load all approaches handle traffic
- Severe throughput degradation in 802.11 with increased traffic due to hidden terminals

Simulation Results: Effect of Channel Switching Delay

- Low throughput degradation up to 200 µsec: switching delay is small compared to packet transmission time
- Big switching delay can be compensated by sending multiple back to back packets

Preview: Context (contd)

- Granularity of Assignment
 - Packet: Channel assignment on a per-packet [DCA'00,MMAC'04,AMCP'06,802.11s Multi-Channel Mesh,...]
 - Flow: All links in a flow are sent along the same channel [MCP'05]
 - Component: Channel assignment on a component basis [COM'07]
- In a single gateway mesh, Component and Flow level assignments have same or worse performance compared to single channel 802.11
- Packet level assignment schemes select their next channel purely based on local inference of channel availability state

Commercial Technologies

Vendor	Product	Radios for client access	Radios for backhaul
BelAir Networks	BelAir 200	1 802.11b/g	Up to 3 proprietary 5GHz
Cisco	Aironet 1500	1 802.11b/g	1 802.11a
Firetide	HotPort 3203	1 802.11a/b/g	Same as for client access
Nortel	Wireless AP 7220	1 802.11b	1 802.11a
Strix Systems	OWS 3600	Up to 3 802.11b/g	Up to 3 802.11a
Tropos Networks	5210 MetroMesh Router	1 802.11b/g	Same as for client access

Source: Network World

Channel Assignment with Insufficient Number of Channels

Definition: Suppose A is a subset of the network graph G, and a channel assignment C to the links of A is given. The contention degree of a link e in A; Co(e); is the maximum cardinality matching of a set M with the following properties: M is a subgraph of A containing e and the following set {l ∈ A | Color(l) = Color(e), d(l, e)_G = 1}

Related Work: Graph Theoretic Techniques

Graph Theory Based Coloring

- L(h, k) labeling problem
- List Coloring Problem

Graph Theory Based Channel Assignment

- Unified Framework and Algorithm for Channel Assignment in Wireless Networks
 - Including several time, code and frequency assignments

D1EC Problem

- First to introduce and investigate the problem
- Study also includes the case of insufficient channels

Related Work: Protocols to Exploit Frequency Diversity

- Single radio protocols:
 - Packet based: [AMCP'06, MMAC'04, DCA'00, 802.11s, …]
 - Flow based: [MCP'05]
 - Component based: [Comp'07]
- Multiple radio protocols
 - MAC modified: [xRDT'07, DAS'01, ...]
 - Unmodified MAC: Load balancing, Topology control, External Interference [DAS'05, RAM'06, ASH'05, ASH'06]

Distance-1 Edge Coloring Problem

- Definition (D1EC Problem) : Given a physical graph G and a selected subgraph of it A ∈ G, the distance-1 edge coloring problem seeks a mapping of colors to links in A such that any two links that are at distance-1 with respect to G are assigned different colors.
 - Definition : The distance-1 chromatic index, K_{D1EC} , of a subgraph $A \in G$, is the minimum number of colors to have a valid D1EC of links in A.

Minimum required number of channels

• Theorem 1: The decision problem whether k colors are sufficient to have a valid D1EC is NP-complete

Basic proof idea: Reduction from graph K cclorobility: I have 3 channels graph H, we construct another graph G su that H is K-colorable if and only if G has a D1EC with K colors.

• For any graph with maximum degree Δ :

 $k_{D1EC} \le min\{|V|, 2 \times (\Delta - 1)^2 + 1\}$

• For arbitrary graphs, K_{D1EC} can be lower bounded with a function of square degree of Δ : $K_{D1EC} \ge \frac{(\Delta + 2)^2}{2}$