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Abstract—We present a novel modeling approach to derive
closed-form throughput expressions for CSMA networks with
hidden terminals. The key modeling principle is to break the
interdependence of events in a wireless network using conditional
expressions that capture the effect of a specific factor each,
yet preserve the required dependences when combined together.
Different from existing models that use numerical aggregation
techniques, our approach is the first to jointly characterize
the three main critical factors affecting flow throughput (re-
ferred to as hidden terminals, information asymmetry and
flow-in-the-middle) within a single analytical expression. We have
developed a symbolic implementation of the model, that we use
for validation against realistic simulations and experiments with
real wireless hardware, observing high model accuracy in the
evaluated scenarios. The derived closed-form expressions enable
new analytical studies of capacity and protocol performance
that would not be possible with prior models. We illustrate
this through an application of network utility maximization in
complex networks with collisions, hidden terminals, asymmetric
interference and flow-in-the-middle instances. Despite that such
problematic scenarios make utility maximization a challenging
problem, the model-based optimization yields vast fairness gains
and an average per-flow throughput gain higher than 500% with
respect to 802.11 in the evaluated networks.

I. INTRODUCTION

From the beginnings of research on CSMA wireless net-

works, significant effort has been devoted to devise analytical

expressions of protocol performance, with pioneering work

such as [1]. Although [1] is specific to fully-connected net-

works, where all terminals are in transmission range of each

other, it established a first relation between system parameters

(such as offered load) and attainable throughput, providing an

important contribution to understanding CSMA protocols.

Subsequent work focused on modeling CSMA performance

in more general wireless networks, where not all the nodes

are in transmission range of each other. In such networks,

multiple factors contribute to determine the flow through-

put distribution. For example, hidden terminals are known

to increase the probability of packet collisions, which can

drastically reduce throughput [18]. Also, the relative position

of nodes in a topology can yield a high probability of collision

at one receiver but a high success rate in another one. Such

a configuration, termed “Information Asymmetry” in [11], can

result in large throughput disparities among flows. In addition,

signals from hidden transmitters can overlap in time leaving

no silent periods for other nodes to transmit, as in topologies

with a “Flow-In-the-Middle” [15], [20]. Such coordination
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problems can significantly alter the throughput distribution,

or even induce complete starvation of specific network flows.

In CSMA networks, many of these factors can manifest

simultaneously, which makes system modeling a daunting

task. State-of-the-art CSMA models, such as [12]–[16], face

this problem by the use of a two-step approach. First, they

separately model each factor with a specific analytical expres-

sion, decoupling them from the rest of the network. Second,

they combine the obtained results using iterative procedures

to determine the throughput distribution at the network scale.

Despite the undeniable importance of these works, the iter-

ative phase is only suitable for numerical computations, and

therefore cannot provide closed-form expressions for network

throughput analysis.

In this paper, we present closed-form expressions of

throughput for CSMA networks with collisions and hidden

terminals. While hidden terminals are not the only factor

affecting flow throughput in CSMA networks, our method is

general enough to capture the three aforementioned topologi-

cal factors (namely hidden terminals, information asymmetry

and flow-in-the-middle), identified by previous work as critical

to determine the flow throughput distribution at the network

scale [11], [15]. In contrast with existing models, our approach

does not rely on any numerical aggregation method. Indeed,

it is the first model characterizing the joint effect of all

such critical factors within a single closed-form analytical

expression.

The key modeling principle to incorporate the effect of

multiple factors into a single equation is to break the inter-

dependence of events using conditional expressions, which

capture the effect of a single factor each, yet preserve the

required dependences when combined together into a larger

expression. As a result, the model is modular and easy to

extend to incorporate additional factors affecting flow through-

put adding appropriate expressions to capture their effects. In

addition, it is based on simple, standard modeling techniques

which makes it easy to adopt for a wide-range of network

analysis applications.

While we use a highly simplified channel model as in

[1], [2], [10], [15], unlike [1], [7] we do not require full

connectivity, and unlike [8], [10], we support asymmetric

interference and partially-overlapping transmissions. Further-

more, our experimental validation shows that, despite the

simplifications, the model features play an essential role in

characterizing CSMA protocol performance, yielding high

accuracy in realistic wireless scenarios (with less than 2%

normalized error averaged over all evaluated data points).



The derived expressions enable unprecedented studies of

capacity and protocol performance in networks with colli-

sions, hidden terminals, asymmetries and flow-in-the-middle

instances. As a concrete example, we show how the model can

be used to determine per-node contention window assignments

that maximize throughput-based utility in such networks.

While the problematic scenarios considered here make utility

maximization a very hard problem, the proposed method yields

excellent results, preventing starvation of disadvantaged flows

and attaining an average per-flow throughput gain of more than

500% with respect to 802.11 in the evaluated networks.

This paper is organized as follows. Section II introduces

the analytical framework and derives the proposed model.

Section III validates the model by means of simulations and

experiments. Section IV demonstrates the use of the derived

expressions applied to network utility maximization. Section V

discusses related work and finally, Section VI concludes.

II. ANALYTICAL MODEL

A. CSMA wireless network

We represent a wireless network with a graph G = (V , E)
where V is the set of nodes and E ⊆ V2 is the set of links, i.e.,

(u, v) ∈ V2 belongs to E iff u and v are in transmission range

of each other.1 A subset F of the node pairs in E denotes the

set of flows in the network. Given f = (i, j) ∈ F , the node i
is the transmitter (or the source) of flow f , and node j is the

receiver (or destination) of flow f .2

All nodes use single antennas operating on the same chan-

nel. Hence, simultaneous signals overlapping at a receiver

collide and cannot be decoded. Also, the same node can

operate either as a transmitter or a receiver, alternating between

the two roles, but it cannot transmit and receive at the same

time. To account for these two cases, we say that flow

g = (i, j) interferes with flow f = (u, v) if either (i, v) ∈ E
or i = v.3 Then, we denote as I(f) the set of flows interfering
with f , i.e., I(f) = {(i, j) ∈ F/(i, v) ∈ E or i = v}.
Nodes execute a CSMA protocol analogous to 802.11 such

that, before transmitting, node u senses the channel to verify

that no neighboring transmitters are active. If the channel

is idle, u initializes an integer variable termed the back-off

counter to a random value uniformly distributed within a

contention window (CW). Time is divided into short time slots,

and transmitter u starts a countdown procedure, decrementing

the back-off counter by 1 at the end of each time slot during

which the channel remained idle. When the back-off counter

reaches zero, u starts a transmission of fixed duration d.
Whenever node u senses the channel busy it interrupts any

countdown procedure and defers its transmission. Once the

ongoing transmissions complete and the channel is sensed free

again, u re-initializes its back-off counter and begins a new

1As it will be discussed later, links need not be perfect and the model
admits specifying channel error rates in a per-link manner.

2Thus, each element in F is an ordered pair denoting an unidirectional
flow. Bidirectional flows may be represented including in F two node pairs
in reverse order.

3Note that this definition of interference is general enough to admit
asymmetric interference relations among flows.

countdown procedure (we assume fully-backlogged flows, i.e.,

a flow source always has a packet available to transmit).

Even with carrier sensing (CS), simultaneous transmissions

at interfering flows are possible. First, propagation delays

can prevent two neighbor transmitters from sensing each

other if they decide to transmit at the same time slot. Sec-

ond, transmitters out of transmission range are unable to

sense each other’s transmissions, drastically increasing the

collision probability. To treat these two cases separately, we

divide the set I(f) of flows interfering with f = (u, v) ∈ F
into two disjoint subsets as follows. Denote as Ir(f) the

set of flows in I(f) whose transmitters are in transmis-

sion range of u, i.e., Ir(f) = {(i, j) ∈ I(f)/(u, i) ∈ E}.
Similarly, denote as Ih(f) the set of flows in I(f)
whose transmitters are out of transmission range of u, i.e.,
Ih(f) = {(i, j) ∈ I(f)/(u, i) /∈ E}.
Typical CSMA implementations use adaptive mechanisms,

such as Binary Exponential Back-off (BEB), to regulate the

CW size. In this work, we do not assume nor require any

specific mechanism controlling the CW size of nodes. Rather,

we address the more fundamental problem of understanding

the relation between CW sizes and flow throughput regardless

of how such CW sizes are chosen. Thus, our approach is

general, and can be applied to the design and evaluation of

either static or adaptive CSMA protocols as long as the mean

back-off time for each node is known.

B. General analytical framework

The key to accurately determine each flow’s service rate is

to account for both the fraction of a flow’s transmission time

and the probability of success for such transmissions. In our

analytical framework, we account for these two quantities by

expressing the throughput of a flow f as the product

γf = T (f) × S(f) (1)

where γf is the long-term average throughput received by flow

f , T (f) is the fraction of transmission time by f ’s source and
S(f) is the conditional probability that a packet of flow f is

successfully received given that it is transmitted.

The fraction of transmission time T (·) can be derived for

flows in an arbitrary topology using the continuous-time CSMA

model due to [5]. In such a model, the back-off time and

transmission duration of a flow f are assumed to be exponen-

tially distributed, with means 1/λf and µf , respectively. Then,

the network dynamics can be captured by a continuous-time

reversible Markov chain M , where each state describes the set

of active flows in the network. More precisely, for each state

m ∈ M , the value mf ∈ {0, 1} indicates whether flow f is

active (see Fig. 1 for an example).4

The stationary distribution π of such a Markov chain has

the known closed-form

∀m ∈ M, πm =

∏

f :mf =1 λfµf
∑

n∈M

∏

f :nf=1 λfµf

(2)

4Due to CS, no state in M has multiple neighbor transmitters active. How-
ever, in the case of hidden terminals, we do include states with transmitters
out of transmission range of each other simultaneously active.



(a) Graph representation of a
two-flow wireless network.

(b) Markov chain model of
the same network.

Fig. 1: A two-flow wireless network with transmitters in

transmission range of each other, and its Markov chain model.

Thus, to derive the fraction of transmission time T (f), it
suffices to sum the steady-state probabilities of all states in

the Markov chain M where flow f is active;

T (f) =
∑

m∈M :mf =1

πm (3)

Due to the reversibility of the Markov chain M [3], (2) is

equally valid for different distributions of back-off times and

transmission durations other than exponential (as long as their

means are respectively 1/λf and µf for each flow f ). Then, (3)
is an accurate expression of the transmission time T (f) in the

networks with uniformly distributed back-off times and fixed

packet lengths considered here (where we replace the mean

transmission time µf by the fixed value d for each f ∈ F).

Instead, the derivation of S(f) represents a major challenge

as several, possibly interdependent, factors can simultaneously

affect a flow’s success rate. For example, in this work we

consider interference from transmitters in transmission range,

interference from transmitters out of transmission range, and

packet losses due to channel errors.

Given a set of factors {φ1, . . . , φN}, denote as cy(f) the

conditions required in the network for factor φy not to hinder

the success of a transmission of f . Then, we can write

S(f) = Pr(c1(f), . . . , cN(f))

= Pr(c1(f)) × Pr(c2(f) | c1(f)) ×
· · · × Pr(cN (f) | cN−1(f), . . . , c1(f)) (4)

Equation (4) provides a general approach to break the

interdependence of events in a CSMA network where multiple

factors simultaneously affect a flow’s success rate. In contrast

with the numerical iterative techniques used in [12]–[16], (4)

combines the effects of all factors within a single step in a

product-form expression. This is the key feature that enables

the derivation of closed-form expressions, which would not be

possible by the use of any numerical method.

For the factors considered here, (4) can be rewritten as

S(f) = Sr(f) × Sh|r(f) × Sc|h,r(f)

where, given an f ’s transmission a, Sr(f) is the probability

that all interferers in transmission range of f are silent during

a, Sh|r(f) is the probability that all hidden interferers to f are

silent during a given that all interferers in range of f are silent,

and Sc|h,r(f) is the probability that the transmission a does not

fail due to channel errors given that during a all interferers to

f are silent. In the following, we derive expressions for these

Fig. 2: Contention states for a flow f1 in a 3-flow network.

Dark node pairs represent active flows.

conditional probabilities to be combined with (1) and (3) to

form closed-form expressions of throughput.

C. Collisions with contending neighbors

To derive Sr(·), we need to account for simultaneous trans-

missions at interfering flows in transmission range. However,

the set of neighbor nodes that can start simultaneous trans-

missions depends on the network state, as some of them may

be deferring their transmissions due to CS. In the following,

we present a method to derive Sr(·) determining the set of

possible neighbor interferers separately for each network state.

For the transmitter u of a flow f to start transmitting, it

must sense the channel idle. We call such a network state in

which u and all its neighbors are silent, a contention state for

f . Denote as N (f) the set of states in the Markov chain M
where all transmitters neighbor to u are silent, i.e.,

N (f) = {m ∈ M/mg = 0 ∀g = (i, j) ∈ F : (i, u) ∈ E}
Now, the set of contention states of flow f in the Markov

chain M can be written as

C(f) = {m ∈ M/m ∈ N (f), mf = 0}
For example, Fig. 2 shows the contention states for a flow

f1 in a network with 3 flows. Given a state m ∈ C(f), the set

of interfering contender flows of flow f in state m is

Ir(f, m) = {g ∈ Ir(f)/m ∈ N (g)}
For example, the sets of interfering contenders of flow f1 in

Fig. 2 are Ir(f1, m) = {f2} for state m, and Ir(f1, n) = ∅ for
state n. Hence, the probability of collision for a transmission

of f1 starting on state n is zero (no contenders can start trans-

mitting in the same time slot as f1), whereas the probability

of collision for a transmission starting on state m depends on

the aggressiveness of f2’s transmitter.5

Then, we decompose the problem of deriving Sr(f) by

considering the conditional probability of each contention state

for f . As Poisson Arrivals See Time Averages [4],

Sr(f) =

∑

m∈C(f) πm × Sr(f, m)
∑

n∈C(f) πn

(5)

where Sr(f, m) is the probability that all interfering neighbors
to f are silent during a transmission of f that started at the

contending state m. In the example of Fig. 2, we have

5While the network state can change during a flow’s back-off procedure
(for example, in Fig. 2 the two states m and n can alternate if the back-off
time for flow f1 is long enough), the memoryless property of the system
allows us to focus on the very last contention state of a flow prior to its
transmission, without keeping track of the previous system history.



Fig. 3: A flow f contending against neighbor flows g1 and

g2. The exponentially-distributed back-off times are mapped

to time slots dividing the timeline in periods of fixed length.

In the example, the contending flow g1 completes its back-off

in the same time slot than f , but the flow g2 does it after.

Sr(f1) =
πm

πm + πn

Sr(f1, m) +
πn

πm + πn

(6)

In the continuous-time CSMA model, the back-off time that

flow f ’s source waits before transmitting is the exponentially-

distributed random variable Xf ∼ Exp(λf ). Although such

model provides accurate expressions of transmission time

(as discussed before in Section II-B), it does not directly

measure collisions of transmissions from neighbor nodes, as

time slots are not readily incorporated. To overcome this, we

first discretize the time as shown in Fig. 3, creating a mapping

between exponential back-off times and time slots. Then, we

derive Sr(f, m) as the probability that no contending flows in

Ir(f, m) complete its back-off in the same time slot than f ;

Sr(f, m) = Pr(t < Xf < τ + t, Xg > τ + t ∀g ∈ Ir(f, m) |

t < Xf < τ + t, Xg > Xf ∀g ∈ Ir(f, m))

=
Pr(Xf < τ, Xg > τ ∀g ∈ Ir(f, m))

Pr(Xf < τ, Xg > Xf ∀g ∈ Ir(f, m))
(7)

where τ is the duration of a time slot and t is the start of the

slot where Xf lies.6

Integrating the joint exponential distribution for independent

random variables over the corresponding time regions for

numerator and denominator, we get

Sr(f, m) =

(

λf +
∑

g∈Ir(f,m)

λg

)(

1−e
−λf τ

)(

e

−τ(

∑

g∈Ir (f,m)

λg)
)

λf

(

1−e

−τ(λf +

∑

g∈Ir(f,m)

λg)
)

which can be substituted into (5) to derive the probability

Sr(f) over all contention states.

D. Collisions with hidden interferers

We now derive Sh|r(f), the conditional probability that all

hidden interferers to flow f are silent during a transmission

of f for which all neighbor interferers are silent. Consider a

transmission a of flow f . To avoid interference from hidden

6When deriving (7), we know Xf < Xg ∀g ∈ Ir(f, m) as these are
the only cases that contribute to T (f) in (3). Cases with Xg < Xf are not
counted by T (f) in the first place and should not be considered here.

Fig. 4: Contention states for a flow f1 in a 3-flow network with

hidden interferers. Dark node pairs represent active flows.

transmitters, two conditions must hold; (i) At the time a starts,

no hidden interferers to f must be active, and; (ii) During the

entire duration d of transmission a, no hidden interferer must

start transmitting. Thus,

Sh|r(f) = S†
h|r(f) × S‡

h|r(f)

where S†
h|r(f) is the conditional probability that all hidden

interferers to f are silent when f ’s transmission starts (i.e.,

conditional on the fact that f is in a contention state), and

S‡
h|r(f) is the probability that no hidden interferers to f start

transmitting for a period of time d given that at the beginning

of such period all of them are silent (and that during the entire

period d, f ’s neighbors are silent as well).

Defining H(f) as the set of states in the Markov

chain M where all hidden interferers to f are silent (i.e.,

H(f) = {m ∈ M/mg = 0 ∀g ∈ Ih(f)}), we have

S†
h|r(f) =

∑

m∈(H(f)∩C(f)) πm
∑

n∈C(f) πn

For example, Fig. 4 shows all the contention states for a

given flow f1 in a 3-flow network. In that case,

S†
h|r(f1) =

πm

πm + πn + πo

=
1

1 + d(λ2 + λ3)

which decreases as the aggressiveness λ2 and λ3 of hidden

interferers to access the channel increase.

In [6], we explain how to derive S‡
h|r(f) by separately

considering all the subnetworks of G where only one hidden

interferer is allowed to transmit at a time. According to it,

S‡
h|r(f) =

∏

g∈Ih(f)

e
−

T
f
g

1−T
f
g

where for each g ∈ Ih(f), T f
g is the fraction of transmission

time of g derived (using (3)) in a subnetwork of G where all

flows neighbor to f and hidden interferers in Ih(f) except g
have been removed.

For example, for the network in Fig. 4, we derive the ex-

pressions T f1

f2
= dλ2

1+dλ2
and T f1

f3
= dλ3

1+dλ3
as the transmission

times T (f2) and T (f3) in subnetworks where the flows f3 and

f2 have been removed, respectively. Then,

S‡
h|r(f1) = e−dλ2e−dλ3 = e−d(λ2+λ3)

which is indeed the probability that no transmissions at the

flows f2 and f3 start for a time period of length d, since the

sum of Poisson processes is yet another Poisson process with

the sum of the rates.



E. Closed-form throughput expressions

The analytical expressions derived in this section can be

simplified by normalizing all time durations by d, and putting

Rf = λfd, which we call the normalized contention ag-

gressiveness of flow f . Then, by direct substitution in the

expansion of (1), we obtain equivalent throughput equations

that depend on the array parameter R ∈ R≥0
|F|, written as

γf (R) = T (f,R)×Sr(f,R)×Sh|r(f,R)×Sc|h,r(f,R) (8)

A similar approach to the one described in Section II-D

could be used to derive Sc|h,r(f,R) as the conditional prob-

ability of no channel errors given that all interferers in I(f)
are silent, by accounting for transmissions of flows that are

too distant from f to interfere with it (i.e., flows out of I(f)),
yet can contribute to raise the noise level at the receiver.

However, in scenarios where the main contribution to chan-

nel errors is due to environmental noise and external factors,

good results can be obtained assuming channel errors to be

independent from MAC protocol operation. In that case, we

set Sc|h,r(f,R) = ef , where ef ∈ [0, 1] is the complement

of the average packet loss rate of f ’s channel in isolation. We

use this second approach for the model validation, measuring

packet loss rates directly from our wireless testbed platform.

III. SIMULATIONS AND EXPERIMENTAL VALIDATION

A. Model implementation and validation setup

Traditional model implementations return the value of

model functions at specific points in their domain by means

of numerical computations. In contrast, to leverage the full

potential of closed-form expressions, we developed a symbolic

model implementation, which inputs a network topology and

outputs the throughput expressions specified by (8) as equa-

tions where model parameters such as R appear as variables.

This enables algebraic manipulation of the returned throughput

expressions for any analytical purpose. For example, the

generated expressions are compatible with Matlab, can be

plotted in Gnuplot as continuous functions or embedded into

scripts or application source code for further processing.

We validate our analytical model using realistic simulations

and experiments with real wireless hardware. Our simulator

is based on the 802.11 implementation of NS-2, with minor

extensions to enable the assignment of arbitrary CW sizes to

each node (thus allowing a complete model evaluation, not

limited to specific CW sizes, such as integer powers of 2).

For our experiments with real wireless hardware, we run

the CSMA implementation in [21] on the WARP platform,7

whose open design provides complete access to all events of

interest at PHY and MAC layers. For each experiment, we

deploy an indoor wireless network testbed of WARP nodes,

setting the required topology by adjusting the transmission

power levels and the relative position of nodes within the

environment. Fig. 5 shows the wireless testbed components.

In both simulator and wireless testbed, data transmissions

are subject to overhead such as headers, inter-frame spaces,

7http://warp.rice.edu

(a) WARP board. (b) WARP node in operation.

Fig. 5: Wireless testbed components.

Experiments Simulations

Time slot duration 0.022ms 0.02ms
Header+PLCP duration 0.135ms 0.192ms
DATA duration 2.61ms 4.216ms
DATA payload 8000bits 8000bits
SIFS 0.014ms 0.01ms
ACK duration 0.125ms 0.304ms
DIFS 0.06ms 0.05ms
EIFS 0.24ms 0.364ms

TABLE I: System parameters.

and ACK control packets sent over the reverse link. To account

for them, we add their duration as part of the transmission

length d in the analytical model. Then, we obtain the average

throughput received by a flow f from the fraction of successful

transmission time as γf (R)× θ
d
, where θ is the payload size of

a data packet measured in bits. Table I summarizes the system

parameters used for validation.

B. Experimental validation over selected topologies

We conducted an extensive experimental validation to evalu-

ate the accuracy of our model. In this section we show selected

results in scenarios known to be critical in determining the

network-wise throughput distribution [11], [15].

For example, in topologies with hidden terminals, like

the one in Fig. 6a, packet collisions have a relatively high

probability due to the inability of transmitters to carrier-sense

each other. While the probability of collision can be reduced

to arbitrarily low values by setting large-enough CW sizes,

excessively long CWs can lead to channel underutilization,

thereby decreasing throughput. Our testbed experiments show

that the model accurately accounts for these two factors via

the expressions Sh|r(·) and T (·), respectively. As a result, it

closely matches the flow throughput measured in the WARP

testbed (see Fig. 6b), with an error normalized over the channel

capacity of about 0.5% averaged over all evaluated data

points. The small difference in the model-predicted throughput

between the two flows is due to the difference in the channel

error rates measured for each link and accounted in Sc|h,r(·).
In the previous example, the two flows are subject to a

symmetric interference relation. However, a common scenario

arising in practice is when one flow interferes with the other,

but not vice versa. An example of such a scenario with

asymmetric interference is depicted in Fig. 7a. In this network,

termed information asymmetry in [11], the uneven probability

of collision at flow receivers can lead to large throughput

disparities or even the total starvation of flow f1. Due to

the general definition of Ih(f), which admits asymmetric
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Fig. 6: Model validation in a topology with hidden terminals.
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Fig. 7: Model validation in a topology with information

asymmetry.

interference relations, our model captures the asymmetries in

the network and returns a different expression of Sh|r(·) for

each flow. This yields very accurate results, closely matching

the actual flow throughput in our experiments, with an error

normalized over the channel capacity and averaged over all

evaluated data points less than 1% (see Fig. 7b).

Finally, the inability of hidden nodes to carrier-sense each

other can also introduce problems of coordination among

flows, such as in the topology with a flow-in-the-middle,

depicted in Fig. 8a. In this network, the side flows f1 and

f3 can successfully transmit simultaneously, while the central

flow f2 can only access the channel when the two side flows

are silent. Furthermore, transmissions at the two side flows

may repeatedly overlap in time leaving no idle time for the

central flow to transmit, which in some cases can lead to the

starvation of the central flow [15], [20].

In such a scenario, the model yields high accuracy (see

Fig. 8b), due to both; (i) the accuracy of T (·) measuring

the fraction of flow transmission time, thereby capturing the

situations where side flows monopolize the use of the channel,

and; (ii) the selective feature of Sr(·) weighting contention

states according to their probabilities. For example, with short

CW values, collisions between f1 and f2 are unlikely to occur,

as the high activity of flow f3 prevents f2 from transmitting.

This situation is captured by (6), which weights the idle

state m with a very low probability. As a consequence, the

model closely matches experimental results, with less than 2%

average error normalized over the channel capacity.

(a) Network topology.
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Fig. 8: Model validation in a topology with a flow-in-the-

middle.
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Fig. 9: A 12-node wireless network with multiple interference

relations among flows.

C. Larger topologies: 12-node wireless network

We extend the model validation to a simulated 12-node

wireless network with 7 flows within an area of 1000m ×
1000m. This network, depicted in Fig. 9, contains a mixture of

the previously discussed problematic scenarios, such as hidden

terminals (e.g., flows 1 and 4), information asymmetry (e.g.,

flows 3 and 4), and flow-in-the-middle (e.g., flows 5, 3, and

6),8 as well as fully-connected groups (e.g., flows 1 and 2) and

non-conflicting flow pairs (e.g., flows 1 and 7). In addition to

this scenario, in [6] we also validate the model using a 10-flow

network with higher node density.

We analyze the variations of flow throughput for multiple

network-wise symmetric CW assignments, depicted in Fig. 10.

We identify subsets of flows that, given their similar situation,

share a common trend in the attained throughput. Flows 6

and 7 are privileged, dominating over flow 5 in information

asymmetry and as side flows to flow 3 in a flow-in-the-middle

relation. As a result, flows 6 and 7 attain high throughput

in all cases except for very short CWs (about 7 slots or

less), which increases their probability of mutual collision.

Flows 1 and 2 form a fully-connected group, yet they suffer

interference from the hidden flow 4. Thus, their throughput is

lowered by a higher collision probability, and can only attain

moderate values when the CW size is large enough (from

about 1000 to 2000 slots). Finally, flows 3, 4, and 5 are the

most disadvantaged, hindered by multiple other flows simul-

8Although flow 5’s transmissions can collide with flow 6’s transmissions,
the effect of CW sizes on the central flow 3 in terms of sensed busy time are
the same as in the previously discussed flow-in-the-middle scenario.
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Fig. 10: Flow throughput as a function of CW size in the 12-

node network of Fig. 9, for both model and simulation results.

taneously in either hidden terminals, information asymmetry

and flow-in-the-middle relationships. The throughput of these

flows is poor for any symmetric CW assignment.

Regardless of the factors involved, the model accurately

tracks variations in the throughput due to CW sizes, with a

normalized error less than 0.5% on average over all evaluated

points. This comprises collisions in transmission range, hid-

den terminals, information asymmetry, flow-in-the-middle, and

combinations of multiple factors manifesting simultaneously.

IV. APPLICATION EXAMPLE: NETWORK UTILITY

MAXIMIZATION

A. Hidden terminals

The problem of optimizing utility in networks without hid-

den terminals is greatly simplified by the fact that the capacity

area of such networks is convex [22], which allows to derive

gradient-descent methods that can be mapped to distributed

operations in the network under certain assumptions [22], [23].

With hidden terminals, instead, the capacity area of CSMA

networks cannot be assumed to be convex. For example,

consider the network topology depicted in Fig. 6a. Assuming

symmetric channel error rates, the throughput expression (8)

for the two flows f1 and f2 respectively reduces to;

γf1(R) =
R1

1 + R1

1

1 + R2
e−R2c

and

γf2(R) =
R2

1 + R2

1

1 + R1
e−R1c

where c is a constant that depends on the ratio between payload
size and transmission duration (θ/d). Using such expressions,

we plot the capacity area C of the network (see Fig. 11a). It

is easy to see that such area is non-convex; in fact, both points

(1000, 0) and (0, 1000) are in C, but their convex combination

(500, 500) = 1
2 (1000, 0) + 1

2 (0, 1000) is outside of C.

While the derivation of distributed algorithms for network

utility maximization is far beyond the scope of this paper,

we show that (8) can be used to determine the best CW

assignments among nodes in a network combining hidden

terminals, topological asymmetries, flow-in-the-middle and

transmitters in transmission range of each other. The joint
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Fig. 11: Capacity region of networks with hidden interferers.

System parameters are those for simulations in Table I.

effect of all such critical factors is not captured by prior models

for CSMA wireless network optimization.

Considering a logarithmic utility function of throughput

Uf (R) = log(γf (R)), the network utility is given by

U(R) =
∑

f∈F

Uf (R) =
∑

f∈F

log(γf (R)) (9)

Maximizing this function is known to yield an optimal

proportional fair throughput distribution in the network;9

R
∗ = arg max

R∈(R≥0
|F|)







∑

f∈F

log(γf (R))







For the hidden terminal scenario considered here,

differentiating (9) with respect to R1 and R2 and

equating to zero yields the optimal assignment

R∗
1 = R∗

2 = (
√

2 − 1) ≃ 0.4142, which corresponds to

a CW of 1154 slots at each transmitter.10

B. Asymmetric interference

The previous example refers to a scenario with hidden

transmitters and symmetric interference. However, as antic-

ipated in Section III-B, topological relations among nodes

can lead to asymmetric interference, which in turn can yield

extreme throughput disparities among flows. In this section,

we illustrate the maximization of utility under asymmetric

interference constraints using the network in Fig. 7a.

In this network, the throughput expressions derived using

(8) for the two flows f1 and f2 are;

γf1(R) =
R1

1 + R1

1

1 + R2
e−R2c

and

γf2(R) =
R2

1 + R2
c

9While we focus on logarithmic utility optimization for illustrative pur-
poses, the analysis presented here easily extends to maximizing other func-
tions of throughput, such as total network throughput or alternative fairness
measures. For example, it can be seen from Fig. 11a that maximum network
throughput can be attained by silencing one of the transmitters and assigning
all capacity to the other one.

10We further verify that the point ((
√

2−1), (
√

2−1)) satisfies the second
order conditions to be a maximum, which we omit here for brevity.



Similar to the previous case, the capacity area of the

network with asymmetric interference is non-convex, as de-

picted in Fig. 11b. Differentiating the network utility function

U(R) = log(γf1(R)) + log(γf2(R)) and equating to zero

yields the following system of equations;
{

dU(R)
dR1

= 1
R2

1+R1
= 0

dU(R)
dR2

= 1
R2

− 2
R2+1 − 1 = 0

While
dU(R)
dR2

= 0 can be satisfied by choosing

R∗
2 = (

√
2 − 1) ≃ 0.4142, the equation

dU(R)
dR1

= 0 admits

no solution in R≥0. However, note that
dU(R)
dR1

is a positive,

decreasing function of R1 over the whole set R>0. Thus,

for any fixed value of R2, the function U(R) is an upper-

bounded, concave, monotonically increasing function of R1.

Therefore, the function U(R1, R
∗
2) asymptotically reaches

its maximum value as R1 → +∞. In other words, to

maximize network utility in the considered topology with

asymmetric interference, flow f1 should access the medium

as aggressively as possible (i.e., using a CW of zero length),

whereas flow f2 should use the moderate aggressiveness

R∗
2 = (

√
2 − 1), which translates to a CW of 1154 slots.

C. Utility maximization on larger CSMA networks

We extend the example of network utility maximization to

larger networks with multiple interference constraints. To this

end, we use the 12-node network used for the model validation

and depicted in Fig. 9. As previously discussed, the 12-node

network contains a mixture of problematic scenarios, including

hidden terminals, information asymmetry, and flow-in-the-

middle, as well as fully-connected groups and non-conflicting

flow pairs. In [6], we consider an additional example using a

10-flow network with higher node density.

In the previous examples, the small number of nodes leads

to a small system of equations mathematically tractable for

direct derivation of optimal points. Instead, in the 12-node

scenario considered here, the larger system of long, non-linear

equations makes it impractical to maximize utility following

the same approach. Furthermore, a numerical search over the

set of possible CW assignments remains unfeasible even when

restricting it to a few possible values per node, as the search

space grows exponentially with the number of flows.11

Instead, we leverage the advantages of our model symbolic

implementation by plugging our throughput expressions within

Matlab’s Global Optimization Toolbox. Then, we run a global

search based on multiple executions of the gradient descent

method fmincon, in case the objective function presents

more than one local maximum point. In total, we execute 5000

runs from distinct starting points, obtaining the same solution

in all cases.

Fig. 12 shows the throughput distribution in the 12-node

CSMA network with optimal CW assignments compared to

the throughput distribution of 802.11 with BEB. We note that

11For example, restricting the possible CW assignments to only 10 different
values in our 7-flow scenario would lead to a search space as large as 107

possible network-wise assignments.
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Fig. 13: Network utility as a function of CW size along each

orthogonal axis. Curves in the plot interpolate data points

obtained by simulation, whereas vertical lines indicate optimal

point coordinates derived by the optimization method.

the optimal CW assignment significantly reduces throughput

disparities, increasing the throughput of flows 1 to 5 and

bringing flows 3 and 5 out of the starvation situation. This

results in a 22% increase of network utility, with an average

per-flow throughput gain of about 550% (ignoring flow 5

whose percentage gain is infinite).

Finally, we illustrate the accuracy of the derived optimal

point by the use of extensive simulations. In this case, we

drastically reduce the number of required simulations in two

ways; first, we reduce the set of possible CW assignments

to a small set in close proximity to the already-determined

optimal point CW ∗. Second, we only vary one element of

CW ∗ at a time, keeping the others fixed to the optimal,

measuring the variations of U(·) over each orthogonal axis.

This way, the required number of simulations grows only

linearly with the number of network flows. Fig. 13 shows the

obtained results. Although this does not constitute a rigorous

proof of correctness, we do observe a strong trend for the

network utility to decrease in all the considered directions as

the distance to the optimal point CW ∗ increases.

V. RELATED WORK

Research in CSMA throughput models started with analysis

of fully-connected networks, e.g., [1], which derived through-

put as a function of the offered load. More recently, [7]

presented a throughput analysis based on a Markov chain



model that incorporates aspects specific to the IEEE 802.11

protocol. Although these works are specific to fully-connected

networks, they provide important contributions to understand

the relation between system parameters and CSMA capacity.

Other work considers more general topologies with hidden

terminals, [2], [8]–[10], [12]–[16]. Each of these is based

on a different set of assumptions and modeling techniques,

which makes them suitable for different purposes. Using a

node-centric approach, [9] provides a lower bound of flow

throughput whose accuracy depends on the fraction of hidden

terminals in the network. [2] derives elegant product-form

expressions under a perfect capture model. [10] instead as-

sumes perfect RTS/CTS messages that are always successful

in reserving a free channel. [8] presents a physical-interference

model that realistically models interference effects at the

physical layer, assuming complete overlap of all simultaneous

transmissions. Finally, [12]–[16] are based on a decoupling

technique, which divides the network into specific scenarios of

easier analysis. An iterative procedure is then used to combine

the results obtained for such atomic scenarios in order to

determine per-flow throughput at the network scale.

Unfortunately, the above methods may not be suitable for

the analysis of some scenarios presented here. For exam-

ple, starvation in the information asymmetry topology is not

characterized under perfect capture, and manifests even with

the use of RTS/CTS mechanisms [17]–[19]. Similarly, partial

overlapping is a determinant factor leading to throughput

disparities in topologies with a flow-in-the-middle [20], a be-

havior not characterized by [8]. Finally, the iterative procedure

in [12]–[16] requires numerical computations, and does not

provide closed-form expressions for throughput analysis.

While multiple factors can simultaneously affect flow

throughput in CSMA networks, our method is general enough

to capture the three main factors in [11], [15] that have been

proven critical in determining throughput distributions at the

network scale; namely hidden terminals, information asymme-

try and flow-in-the-middle. Furthermore, it characterizes flow

throughput in CSMA networks using a single equation, with-

out the use of iterative or aggregation procedures. Unlike most

previous work, we use experiments in addition to simulations

to evaluate the accuracy of our models.

VI. CONCLUSION

We presented closed-form expressions of throughput for

CSMA networks with collisions and hidden terminals. The

key modeling principle driving our approach is to break the

interdependence of events in a wireless network by the use

of conditional expressions. Our experimental validation shows

that the model features play an essential role characterizing

CSMA performance, and accurately capture combinations of

the main critical factors determining throughput distribution at

the network scale. Furthermore, we have shown how the model

enables unprecedented network studies through a concrete

example of utility maximization in complex networks with

a combination of collisions, hidden terminals, asymmetric

interference and flow-in-the-middle (which were not jointly

addressed to date by other models for CSMA network opti-

mization), yielding excellent results.

REFERENCES

[1] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels:
Part I - Carrier Sense Multiple-Access modes and their throughput-delay
characteristics,” IEEE Trans. on Communications, Vol. COM-23, No. 12,
pp. 1400-1416, Dec. 1975.

[2] R. R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin, “Through-
put analysis in multihop CSMA packet radio networks,” IEEE Trans. on

Communications, Vol. COM-35, No. 3, pp. 267-274, March 1987.
[3] F. Kelly, “Reversibility and Stochastic Networks,” Wiley, Chichester,

1979.
[4] R. W. Wolff, “Poisson Arrivals See Time Averages,” Operations Re-

search, Vol. 30, No. 2, March-April 1982.
[5] F. Kelly, “Stochastic models of computer communication systems,”

Journal of the Royal Statistical Society, Vol.47, No. 3, pp.379-395, 1985.
[6] B. Nardelli and E. W. Knightly, “Closed-form throughput expres-

sions for CSMA networks with collisions and hidden terminals”,
Rice University Technical Report, TX, July 2011, available at
http://networks.rice.edu/papers/TREE1107.pdf.

[7] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coor-
dination function,” IEEE Journal on Selected Areas in Communications,
Vol. 18, No. 3, pp. 535-547, March 2000.

[8] M. M. Carvalho and J. J. Garcia-Luna-Aceves, “A scalable model for
channel access protocols in multihop ad hoc networks,” in Proc. of ACM
MobiCom, Philadelphia, PA, Sept. 2004.

[9] H. S. Chhaya and S. Gupta, “Performance modeling of asynchronous
data transfer methods of IEEE 802.11 MAC protocol,” ACM Wireless
Networks, Vol. 3, No. 3, pp. 217-234, 1997.

[10] X. Wang and K. Kar, “Throughput modelling and fairness issues in
CSMA/CA based ad hoc networks,” in Proc. of IEEE INFOCOM,
Miami, FL, 2005.

[11] M. Garetto, J. Shi, and E. W. Knightly, “Modeling media access in
embedded two-flow topologies of multihop wireless networks,” in Proc.
of ACM MobiCom, Cologne, Germany, Sept. 2005.

[12] K. Medepalli and F. A. Tobagi, “Towards performance modeling of
IEEE 802.11 based wireless networks: A unified framework and its
applications,” in Proc. of IEEE INFOCOM, 2006.

[13] Y. Gao, D. Chiu, and J. C. S. Lui, “Determining the end-to-end through-
put capacity in multi-hop networks: Methodology and applications,” in
Proc. ACM Sigmetrics, pp. 39-50, June 2006.

[14] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A general
model of wireless interference,” in Proc. of ACM MobiCom, Montréal,
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