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ABSTRACT

In order to evaluate, improve, or expand a deployed, city-
wide wireless mesh network, it is necessary to assess the
network’s spatial performance. In this paper, we present
a general framework to accurately predict a network’s well-
served area, termed the metric region, via a small number of
measurements. Assessment of deployed networks must ad-
dress two key issues: non-uniform physical-layer propagation
and high spatial variance in performance. Addressing non-
uniformity, our framework estimates a mesh node’s metric
region via a data-driven sectorization of the region. We find
each sector’s boundary (radius) with a two-stage process of
estimation and then measurement-driven “push-pull” refine-
ment of the estimated boundary. To address high spatial
variation, our coverage estimation couples signal strength
measurements with terrain information from publicly avail-
able digital maps to estimate propagation characteristics be-
tween a wireless node and the client’s location. To limit
measurements and yield connected metric regions, we con-
sider performance metrics (such as signal strength) to be
monotonic with distance from the wireless node within each
sector. We show that despite measured violations in cover-
age monotonicity, we obtain high accuracy with this assump-
tion. We validate our estimation and refinement framework
with measurements from 30,000 client locations obtained in
each of two currently operational mesh networks, Google-
WiFi and TFA. We study three illustrative metrics: cov-
erage, modulation rate, and redundancy, and find that to
achieve a given accuracy, our framework requires two to five
times fewer measurements than grid sampling strategies. Fi-
nally, we use the framework to evaluate the two deployments
and study the average size and location of their coverage
holes as well as the impact of client association policies on
load-balancing.
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1. INTRODUCTION

City-wide wireless mesh networks provide Internet con-
nectivity through the deployment of outdoor 802.11-based
mesh nodes [4]. To evaluate, expand, or improve perfor-
mance in a deployed network, a network operator must first
assess the current spatial performance of the network. We
formulate the wireless network assessment problem as a prob-
lem of identifying metric regions, i.e., identifying locations
in the network where the given performance metric meets
a conformance threshold. Existing assessment strategies ei-
ther require exhaustive measurements [19] or use detailed
physical-layer object descriptions to precisely estimate prop-
agation characteristics [20]. Unfortunately, these approaches
are expensive and often impractical, especially for incremen-
tal network upgrades.

In this paper, we present a general framework to assess the
spatial performance of a deployed mesh network using a con-
strained number of measurements. We estimate metric re-
gions by coupling the use of coarse-grained terrain maps with
the construction of virtual sectors of differing radii overlaid
on the physical topology. We evaluate the framework itself
and study two deployed urban mesh networks using mea-
surement sets from approximately 30,000 client locations in
each network. In particular, our contributions are as follows.

First, we devise a mesh network assessment framework
that divides each node’s metric region into a number of vir-
tual sectors. We use a two-stage process to first estimate
the metric sector boundaries (radii) and then to refine each
boundary estimate through the selection of a small number
of measurements. For coverage, the difficulty in estimating a
metric region is due to complex and highly variable interac-
tions with the physical environment, e.g., see [13]. Thus, we
use the geometry of the terrain obtained from publicly avail-
able digital maps to account for differences in propagation
characteristics among regions. Moreover, we refine the esti-
mated sector boundaries with a small number of measure-
ments guided by a push/pull heuristic that selects measure-
ment locations and adjusts the estimated boundary. By as-
suming a monotonic decay in performance with distance, we
model a metric region as a single, connected, multi-sector,
multi-radii region. We show that despite some monotonicity
violations, we obtain high characterization accuracy.

We then validate our framework and evaluate two oper-



ational networks by performing an extensive set of client
measurements from two currently deployed wireless mesh
networks, GoogleWiFi and TFA. We show that for a given
accuracy in describing metric regions, our framework re-
quires two to five times fewer measurements than a grid
sampling strategy. We compare our boundary refinement
heuristic to a simplified ray-tracing approach, and show that
our heuristic is more robust to monotonicity violations and
obtains better accuracy. Using our framework, we find that
the TFA network is deployed with sufficient density so that
coverage holes occur only on the network edges. However,
for the GoogleWiFi network, the frequency of coverage holes
is much less dependent on deployment density, although the
size of the holes decreases for higher node densities. This
points to a key challenge of covering holes with additional
nodes: a large number of additional nodes would be re-
quired to eliminate numerous small coverage holes in which
half have radius of less than 10 meters. Lastly, we investi-
gate client association policies and find a 20% loss in client
throughput due to uneven spacing of mesh nodes.

The rest of this paper is organized as follows. Section 2 de-
fines the assessment problem and our proposed framework.

Section 3 presents estimation, sectorization, and measurement-

based refinement algorithms. Section 4 validates the accu-
racy of our framework with real data sets and Section 5 eval-
uates two studied deployments. Section 6 discusses related
work and finally, Section 7 concludes.

2. ASSESSMENT FRAMEWORK

In this section, we formally define the network assessment
problem and then set up the required notations and defini-
tions for our estimation and refinement framework.

2.1 Problem Definition

The problem we address is how to accurately character-
ize the coverage of a network with a small number of mea-
surements. Generally, we characterize a network by iden-
tifying specific areas in the network where the measured
value of a given metric (e.g., signal strength) exceeds a given
threshold. Therefore, a good characterization scheme is one
with a high accuracy for identifying unmeasured locations
as above or below the given threshold. This formulation
addresses scenarios such as: 1) a network operator wishing
to identify dead-spots in order to add nodes and improve
performance, or 2) a municipality wishing to determine if a
deployed network conforms to contractual performance re-
quirements. We next formally define the assessment problem
with a constraint on the number of measurements allowed.

We consider a terrain 7, which consists of a continuous
space of points, p € 7, on a 2-d Cartesian plane. Similarly,
we define the set of mesh nodes N, where each node n € N is
defined by a coordinate pair in 2-d space. Let M represent a
specific performance metric; our study focuses on an SNR-
based coverage metric, but also includes modulation rate
and redundancy. For each point p, we define M(p) as the
measurable value of metric M at point p. Measurement cost
is assumed to be identical for all points p € 7, but not for
all metrics.

We begin by characterizing a single point with respect to
a given metric M and given threshold, 657, which represents
the metric’s performance cutoff. A point p satisfies metric M
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if M(p) > 0. Characterization is then defined as correctly
predicting if a location satisfies metric M. For metric M,
a mesh node’s metric region is the set of all points p € T
such that M(p) > 6a. A mesh network’s metric region is
the union of all mesh node metric regions in set \.

The role of measurements in the characterization of a net-
work is to gain additional knowledge with which to increase
the accuracy of predicting the value of M at an unknown
location. In order to limit the measurement expense of the
assessment study, we add a constraint that limits the total
number of measurements. Stated as an optimization prob-
lem, we seek to maximize the characterization accuracy over
a terrain 7 subject to a constraint on the total number of
measurements taken. We consider both versions of the prob-
lem where we characterize the metric region of a single node
or of an entire network.

A key challenge for signal strength based metrics is that
physical-layer transmissions do not propagate uniformly at
all angles from a mesh node and signal strength does not
monotonically decrease with distance. Further, there is no
known practical way to a priori characterize the large changes
in signal strength over short distances.

2.2 Metric Definitions

We first define three performance metrics for coverage,
modulation rate, and redundancy. The coverage metric is
based on the received signal-to-noise ratio (SNR), labeled
Pis(p,n), at a client point p from node n. A conformance
threshold, 6., indicates the minimum acceptable SNR.

Definition 1. Consider a terrain T, a location p, and a
mesh node n in 7. The location p is covered by n if the
received SNR at p with respect to n, Pyp(p,n) > 0.. The
coverage region of n is the set of all points in T covered
by n.

The second metric is modulation rate, which captures the
expected value of the physical-layer modulation rate in use
at a given location. This value is a function of SNR and
the rate selection protocol used, e.g., Auto-Rate Fallback
(ARF).

Definition 2. Let n be a mesh node and p be a client
location in a terrain 7. The modulation rate of p with
respect to n is the expected physical layer modulation rate in
use. The modulation-rate region of n is the set of all
points in T with expected modulation rate at least threshold
0.

We now define the coverage redundancy metric, which is
based directly on the coverage metric and is the number of
mesh nodes which cover a given point.

Definition 3. The redundancy of a location p in a ter-
rain 7 is the number of mesh nodes that cover p. The k-
redundancy region of 7 is the set of all points in T with
redundancy k or greater.

2.3 Metric Sector Framework

Our framework uses terrain information to divide the mesh
node metric region into virtual sectors of varying angular
widths and radii. To accurately characterize the network’s
diverse propagation environment, we independently estimate
sector angles and boundaries



More formally, a metric sector of mesh node n is a sector
of the circle centered at n contained between angles ¢1 and
¢2. We consider monotonic performance metrics defined
as follows. Let the function d(p1,p2) denote the distance
between points p1 and p2 in a terrain, then:

Definition 4. Let T be a terrain and M be a metric. M
is monotonic in 7 if for every mesh node n in T, for any

ray R emanating from n and for any two points p1 and p2
on R, if d(p1,n) < d(p2,n), then M(p1) > M(p2).

While we assume performance measures such as signal
strength decay monotonically for each ray, the use of multi-
ple sectors with different radii does not require monotonicity
among rays nor among sectors. For example, a far away sig-
nal strength can be greater than that of a closer distance
provided that the two points are on rays having different
angle from the originating node.

We assume that this monotonicity property is satisfied for
coverage and show later in Figure 8 that the coverage metric
mostly satisfies this property. The modulation rate metric
also satisfies monotonicity, whereas the redundancy metric
does not.

Let the boundary of a metric sector be the arc segment
between angles ¢1 and ¢2, which defines the sector’s border
at radial distance r from the mesh node. With this defi-
nition, we characterize a monotonic metric at an unknown
location based on whether it is inside the metric boundary
or not. The disjoint union of all metric sectors and sector
boundaries defines the metric region. Note that the region
boundary is non-uniform as it depends on the environment
specifics in the region, and is different for each performance
metric.

Thus, our proposed framework overlays a sector-based
structure on the assessment problem. The objective to max-
imize predictive accuracy translates to minimizing the dif-
ference between the estimated and true metric boundary.
The framework provides three types of variables to optimize
on a per-node basis: 1) the number of sectors, 2) each sec-
tor’s boundaries, ¢1 and ¢2, and 3) the boundary distance
r for each sector. The optimal solution is approached as
the number of sectors goes to infinity, allowing the bound-
ary to vary over smaller and smaller angles. In practice, we
employ a small number of sectors because there is signif-
icant correlation over moderate angular distances, and the
grouped boundary allows refinement with few measurements
per sector, increasing overall accuracy.

Figure 1 depicts an example of our framework’s opera-
tion with a mesh node in the center of the figure, six vir-
tual sectors displayed, and the estimated sector boundaries.
In the next section, we present our techniques for choosing
the sector borders ¢ and boundary distances r, in order to
heuristically improve the selection of boundaries.

3. ESTIMATION AND REFINEMENT

In this section, we describe our estimation techniques, in-
cluding an estimator for coverage that exploits terrain in-
formation from digital maps. We then show how to use the
estimates to drive sectorization so that chosen sectors have
an approximately uniform boundary throughout. Lastly, we
present an online heuristic to choose measurement locations
in order to refine the metric sector boundary.

o Measured Coverage Region
Sector Boundaries

ooo

000800

Figure 1: Example metric sectorization and bound-
aries for an example GoogleWiFi mesh node’s cov-
erage region.

3.1 Performance Metric Estimation

We first present a coverage estimator which exploits ter-
rain information to improve accuracy. We also introduce
simple estimators for the modulation rate and redundancy
metrics. Both coverage and modulation rate satisfy mono-
tonicity, while redundancy does not, although it is calculated
as a function of the coverage metric.

For coverage estimation, the environment has an average
propagation environment (path loss) throughout. Yet, spe-
cific areas exhibit different propagation behavior due to dif-
ferent terrain (e.g., streets vs. buildings). Thus, an an-
tenna’s transmission not only experiences different attenu-
ation at each angle, but each ray also faces varying atten-
uation as it moves away from the source. To address this
uncertainty, our key technique is to couple terrain maps with
measurements in order to better estimate SNR at a point.
We do this by calculating an average path loss for the entire
network, and then for each measurement pair, we use the
terrain information to estimate the shadowing, i.e., the de-
viation (in dB) from the average path loss. We next describe
the terrain information and then our estimation equations.

Terrain features encompass any type of physical area of
the input map, such as buildings, fields, or trees, all of which
are approximated with polygons. Figure 2 shows the pub-
licly available digital map that we use to extract the Google-
WiFi terrain feature information. The TFA terrain map is
not shown, but is similar. The number of different feature
types and resolution of the terrain features determines the
amount of information gained from the map, and is depen-
dent on how the map processing algorithm groups similar
features. Edge-detection image processing algorithms can
be used to input satellite and city maps [9]. The maps used
in our evaluation show zoning information and so a simple
heuristic algorithm suffices to perfectly identify all terrain
features. The output of the map processing algorithm is the
set of polygons representing the terrain features. We then
use training measurements to assign attenuation weights,
Cy, to each feature type to indicate the feature’s impact on
pathloss estimation. Note that our studied networks feature
homogeneous antenna heights and we restrict to 2-d maps.

We estimate coverage using the standard log-normal path
loss equation with shadowing [19]. Our key technique is
to use terrain features to estimate the shadowing value for



Figure 2: Terrain map of Mountain View, CA, for
the measurement study area.

each individual link. Shadowing accounts for the random
variations in signal strength between node and client pairs
at the same distance d(n, p), which are due to differences in
the scattering and attenuation environment and is usually
represented as a zero-mean Gaussian random variable [19].

Therefore, instead of estimating based only on average
path loss, we also define a terrain-informed shadowing es-
timator, B(n,p), to capture the specific path’s deviation
(higher or lower) from the average path loss. Recall that
the received power Pyp is a function of the measured power,
Po, at reference distance do, and the average path loss ex-
ponent a. Our estimate for the SNR is then:

Pastpm) = Po—100log S0P 4 g ) (1)

0
The terrain-informed estimator, 3(n,p), depends on a) the
terrain features in 7 that lie along the ray between the mesh
node n and point p, b) the width of this ray’s intersection
with each feature, and c) the feature type and weight, C.
Specifically, B(n, p) is defined as the sum of each intervening
feature’s impact on pathloss:

Blnp) = 3 Crxwn.p,f) (2)

feF

where F' is set of all features in the terrain 7, Cy is the
weight of a feature (attenuation in dB per unit distance),
and w(n,p, f) is the intersection width of the ray between n
and p on the terrain feature f. In other words, each terrain
feature that a link intersects either adds or subtracts from
the value of the estimated pathloss, as a function of the
feature weight CY.

The o and Cy terms above must be determined with some
measurement overhead for each network. Training measure-
ment locations are chosen randomly throughout the terrain,
where each link intersects a subset of the terrain features in
question. The training measurements must pass through a
representative set of terrain features to capture each fea-
ture’s effect on pathloss. In other words, we take mea-
surements driving around the edges of terrain features, as
opposed to measurements within each feature. The mea-

sured SNR values and measurement distances, in combi-
nation with Equations (1) and (2), then lead to a system
of equations with the parameters as unknowns. We use
minimum-mean squared error fitting to choose values of «
and Cy which best fit the measurements and equations. Sec-
tion 4 studies the number of measurements needed per fea-
ture type, found to be between 10 and 20 for high accuracy
estimation. Our approach for incorporating small-scale ter-
rain features builds upon empirical models for outdoor path
loss prediction [16] in macrocells with adjustments for ter-
rain environments.

The modulation rate estimator builds upon the coverage
metric as follows. The constant C, maps SNR to an ex-
pected modulation rate choice, T'(n, p), from the set of pos-
sible physical layer modulation rates as: T'(n,p) = C; X
Pi5(p,n), where C is dependent on the interface technology
in use. Finally, estimation for redundancy derives directly
from the coverage estimation discussed previously.

3.2 Estimating Monotonic Metric Regions

The objective of the estimation algorithm is two-fold: to
choose sector locations (angles ¢1 and ¢2) and estimate the
metric boundary distance of each sector. Because the total
number of measurements needed is a function of how many
sectors are used, the algorithm merges boundary sections
to reduce the number of sectors considered to the desired
number and to output sectors with approximately uniform
propagation throughout. The only measurements required
for this algorithm are training measurements for the met-
ric estimation function parameters, e.g., values of pathloss
exponent o.

Algorithm Estimate-Mono-Metric-Region (terrain 7, mesh

nodes N, metric M)
1. For every mesh node n € N, do Steps 2 through 6.

2. Pick a set of rays at uniformly spaced angles from the
mesh node. Call this set R, where the number of rays
is chosen to be significantly larger than the desired
number of final output sectors.

3. For each ray in set R, a) traverse the ray along the
terrain map identifying terrain features and the re-
spective type and attenuation; b) estimate the value
of the metric M using a metric estimator to identify
the boundary point x on the ray, where M (z) = 0ar;
and c¢) connect the boundary points x on each ray to
identify the estimated boundary of the metric sector.

4. Create a mapping from each ray’s angular position to
the estimated metric boundary distance, d(n, z).

5. Curve fit a step function to the above mapping, mini-
mizing the mean-squared error between the estimated
boundary distance and step function approximation.
The number of steps corresponds to the number of al-
lowed sectors, the height of each step is the boundary
distance of each sector, and the cutoff points of each
step are the sector border angles ¢ and ¢2.

6. Output set of sectors with borders defined by step
function cutoff points.

Figure 3 shows an example of the estimation algorithm
output. We divide the region surrounding the mesh node



into 360 sectors with equally spaced rays (one per sector)
and estimate the boundary distance of each sector. Since
estimation requires only a constant number of training mea-
surements, the number of rays chosen in this step does not
increase the measurement budget. We then merge the sec-
tors to result in the sectorized ranges also plotted (step func-
tion). Also, included are the measured ranges for this mesh
node for the angles where we have data points available.
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Figure 3: Example of sectorization process in algo-
rithm Estimate-Mono-Metric-Region for a Google-
WiFi mesh node. As a function of angle from the
mesh node, we plot the estimated ranges, the sec-
torized estimate, and the measured ranges.

3.3 Estimated Boundary Refinement

We now describe our algorithm to choose measurement
locations in order to refine the boundary estimate of each
sector. The refinement is challenging due to monotonic-
ity violations and a noisy boundary. Therefore, we present
a push/pull refinement heuristic, which is robust to these
challenges by keeping little state in order to recover from
anomalous measurements. Generally, the algorithm mea-
sures at the estimated boundary and then either pulls or
pushes the estimated boundary nearer or farther from the
mesh node based on the measurement result. The algorithm
terminates when a boundary is found or the measurement
budget per sector is exceeded. Algorithm Refine-Estimate

(terrain 7, wireless nodes N, sectors, metric M)
1. For each mesh node n € N, do Steps 2 through 6.
2. For each sector of mesh node n, do Steps 3 through 5.

3. From the location of n, draw one bisecting ray through
each sector and identify point x, where the boundary
intersects the ray.

4. Perform heuristic boundary refinement. While per-
sector measurement budget not exceeded, take one

measurement as close as possible to the estimated bound-

ary z. If measurement is in metric region, move bound-
ary point x away from mesh node by constant distance,
and vice-versa if measurement is outside of metric re-
gion. Stop if measurement is within tolerance (e.g., £
3 dB) of threshold value. Label the resulting boundary
point on the ray as z.

5. Draw arc through z to identify the refined boundary
estimate for the metric sector.

6. Merge all the metric sectors with revised boundaries
to get the refined estimate of the metric region of n.

Algorithm Properties. By limiting the number of mea-
surements per sector in the algorithm Refine-Estimate and
limiting the number of sectors in the algorithm Estimate-
Mono-Metric-Region, we ensure an upper bound on the to-
tal number of measurements taken, which is the product
of the number of mesh nodes, the number of sectors per
mesh node, and the maximum number of measurements per
sector. Measurements are required only for 1) training mea-
surements to estimate parameters a and Cy and 2) bound-
ary refinement measurements in step 4 of algorithm Refine-
Estimate. There are two reasons for the actual number of
measurements to be less than this bound: a) boundary re-
finement requires fewer measurements, and b) overlapping
mesh node regions allow a measurement to be taken for mul-
tiple mesh nodes at one time.

3.4 Non-Monotonic Metrics

Our proposed estimation algorithm assumes a connected
metric region and thus a single metric boundary, derived
from the monotonicity property. We extend our framework
to non-connected regions by considering only pairwise esti-
mation instead of boundaries. The key aspect that allows
us to estimate a disconnected region is a positive (additive)
value for Cf terms in Equation (2). We later show in Sec-
tion 4 that pairwise estimation is more accurate, but does
not gain as much from additional measurements.

A simple ray-tracing method for improving our estimates
with measurements involves localized refinement of the
term in the estimator Equation (1). Instead of assigning
values of Cy based on global terrain features, we estimate
the Cy terms for only those features within a sector. We take
uniformly distributed measurements per sector in order to
refine Cy values. This simple ray-tracing algorithm has the
benefit of not assuming a connected region.

4. FRAMEWORK VALIDATION

We now validate our proposed framework using measure-
ments from the GoogleWiFi and TFA networks with three
performance metrics: coverage, modulation rate, and redun-
dancy. We first introduce the network architecture and our
measurement methodology. For each metric, we evaluate the
accuracy and measurement overhead of our framework algo-
rithms. For the coverage metric, we also discuss the sources
of inaccuracy and the frequency of monotonicity violations.
The remaining metrics build upon coverage regions and we
evaluate how accurately they can be estimated using our
framework.

4.1 Framework Validation Methodology

The measurement study consists of measurements from
approximately 35,000 locations in the GoogleWiFi network
and 29,000 locations in the TFA network.? We apply and
validate our framework using only small (100s of measure-
ments) subsets of the data, whereas we use all data to eval-
uate the accuracy of our framework. Each coverage mea-
surement corresponds with a GPS location reading. For our

2All measurement data available for download from
tfa.rice.edu



modulation rate metric, measurement pairs consist of the
current SNR and modulation rate, and we extrapolate these
measurements to a full set (all locations) of modulation rate
measurements based on the probability distribution at each
SNR value. The coverage threshold is set at 6. = 25 dB as
this value allowed download throughputs of approximately
1 Mbps in both networks.

4.1.1 Removing Measurement Bias

Each coverage measurement point is a 4-tuple with x,y
GPS coordinates, a node identifier, and an SNR, value. We
measure locations throughout all streets in the studied area,
i.e., wardriving, as well as measuring in parking lots and
driveways where possible. As the studied networks are not
intended for pervasive indoor access, we focus on outdoor
measurements.

We calculate the coverage of a network as the fraction
of locations with measured signal strength above threshold
0.. Because the error of the GPS positioning is 3 meters,
we consider a single location as covered if there exist any
measurements above 6. within a 3 meter radius. We then
define predictive accuracy as the fraction of locations that
our framework correctly predicts as covered or not.

To account for an uneven spatial distribution in our mea-
surements, we generate a set of 2-d sample points from a
spatial Poisson process with intensity of 10,000 samples per
km?. Our evaluation then considers only sample points that
are within 3 meters (the GPS accuracy) of at least one mea-
surement. If multiple co-located measurements exist from a
single mesh node, we consider the median of the measured
SNR values. To determine the predictive accuracy of our
estimation of a node’s metric region, we weight the distribu-
tion of measurement distances, d(n, p), to give less weight to
progressively longer distances. The weights are based on the
empirically measured distribution of distance from a client
location to the nearest three mesh nodes.

The received signal power cannot be measured below a
minimum receive power as the wireless card is not able to
distinguish between weak transmissions and noise. In order
to distinguish coverage holes from locations that the mea-
surement study did not visit, we infer a coverage hole (un-
covered location) with respect to a mesh node only if there
is no measured value for that node but there is for another
node. All measurements are obtained from the client, and
hence all predictions pertain to the client performance.

4.1.2 Alternate Techniques

We compare our framework against two alternate approaches:

uniform propagation estimation and grid-based sampling.
Uniform propagation restricts the shape of a metric region
to a circle with radius determined only by the path loss ex-
ponent . In comparisons, we use the most accurate value of
the radius for each circular region, assuming sufficient mea-
surements have been taken. Second, grid-based sampling
provides a fair comparison for a given number of measure-
ments. For a given density, measurements are taken on a
grid, and unknown points are estimated via interpolation.

4.2 Measurement Study Background

At the time of this study, the GoogleWiFi network con-
sists of 447 Tropos mesh nodes mounted mostly on city light
posts and covering a total outdoor area of 31 km? in Moun-
tain View, California. The Tropos nodes consist of a 7.4

dBi antenna and a single 802.11g wireless interface. Figure
2 shows the digital map providing terrain feature informa-
tion for GoogleWiF1i, which is a publicly available economic
zoning map of the city of Mountain View. We measured
a 12 km? region, encompassing the northwest quadrant of
the network, as shown in Figure 4. The client measurement
platform for the GoogleWiFi study was a laptop with an
external 802.11g wireless adapter, 3 dBi antenna, and GPS
receiver.
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Figure 4: Coverage map in the GoogleWiFi network
with circles representing covered locations and x’s
representing holes in the 12 km? measured area with
168 mesh nodes.

The TFA Network is an urban mesh network, deployed
in southeast Houston by Rice University [3]. At the time
of the measurement study [6], the network consisted of 17
mesh nodes, providing coverage to a 3 km? area. Each mesh
node features a high gain 15 dBi omnidirectional antenna
placed approximatively 10 meters above the ground, higher
than most of the houses and some of the trees in the neigh-
borhood. The coverage region for the TFA network is shown
in Figure 5. The TFA measurement platform was a laptop
inside a car with an 802.11b wireless interface, a 7 dBi ex-
ternal antenna, and a GPS receiver.

The two networks have several key structural differences.
The antennas used in TFA are taller and have higher gain,
indicating a larger coverage region. This is offset partially
by the difference in terrain, as the TFA network is filled with
larger, denser trees which act as attenuators. Moreover, the
GoogleWiFi nodes are mounted on light poles along streets
whereas most TFA nodes are mounted against houses in the
interior of a residential block.

4.3 Coverage Metric

We focus on validating the predictive accuracy of our
framework for the coverage metric region based on SNR
measurements from both GoogleWiFi and TFA. We sepa-
rately investigate our terrain-informed estimation technique
and boundary refinement algorithm. Also, we evaluate the
degree to which the coverage metric obeys the monotonicity
property and the resulting impact on framework accuracy.

For a given accuracy level, the framework reduces the re-
quired number of measurements by a factor of two to five as
compared to a sampling and interpolation strategy. Figure
6 presents the predictive accuracy of our framework and a



X OO0 X x
00 x
x Ox x
X X
X x
X X X
x X X X
Ox
x Oxxx00X XX XX
x x XX xxxx %000 X x
XXOX X XXXX x X X0 o Ox x
Ox x [} xxxx000 000 [} X X
X X X X X0 X X X X QXX 0000000000 O [e] X
XXX XOOXXXXXXO0X XXX OO0 000000000000 O000 X
XX XX X000 o] o] X XX X000 00000 00 X
XXX XXXx0000000000000Xx x00xXxxx000000000000 X
X X o] o] O 00000 000000 0000 X
XXX xx0000000000000000000000000 O e} 000000 x
X 000000000000 O0O0O0OOO0O0OO00000 O
xx00000000000 o] [e]e} 000 O 00 O
xxx00000000000000O000O0O0O000000000000
xO 0000 00000 00000000000
XXX XXxx00000 o] x O o] o]
XX x 0000 OO0 X X xx000000000
XXX xx000000xx x00x x 0000 [e]
x X X X O X X X x 000000 o
XXX xXx0000 x X x0O000000000
x x x XX X x x 00 o
x X X X X X x x 000 x x000
X X O O 000
X X X O 000
x X X X X x 0000
X X X QX X x
X X X X X O X X [} [e]e}
X X X X O X X x000
x %O

x
x
x
x

Figure 5: Coverage region of the TFA network with
circles representing covered locations and x’s repre-
senting holes in 3 km? measured area, including the
network edge where weak signal was measured.

grid sampling strategy in both network scenarios as a func-
tion of the measurement budget per km?. These values do
not reflect a one-time overhead of approximately 60 training
measurements. Note that both approaches have a practical
upper limit to accuracy, regardless of measurement budget,
which we later show is due to monotonicity violations. More-
over, grid sampling accuracy does not exceed our frame-
work’s accuracy until approximately 10,000 measurements
per km?, i.e., an exhaustive study.
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Figure 6: Predictive accuracy of network coverage
assessment with measurement budget, comparing
our framework with grid sampling strategy.

Figure 6 presents the total accuracy for covered and not
covered locations. Though total accuracy improves, our ac-
curacy for predicting covered locations is constant at 90%
for all measurement budgets. As measurement budget in-
creases, the ability of our framework to correctly predict
coverage holes improves from 63% accuracy to 90% accuracy,
leading to the improvements in Figure 6. Coverage holes are
more difficult to correctly predict because all nearby mesh
nodes’ regions must be correctly predicted in order to cor-
rectly predict a hole.

4.3.1 Coverage Estimation Accuracy

We now focus on predicting a particular node’s metric re-
gion, as opposed to the network’s metric region by compar-
ing four estimation strategies: 1) ideal estimation assuming
all measurements are known, 2) per-location coverage es-
timation using Equation (1), 3) Algorithm Estimate-Mono-
Metric-Region, and 4) the uniform propagation model. Note
the difference between per-location estimation using only
Equation (1) and estimation based on sectorization and bound-
ary estimation is that the boundary-based estimation aver-
ages over a 20 degree sector before predicting locations.

Terrain-informed estimation halves the estimation errors
compared to uniform propagation. Figure 7 presents the me-
dian accuracy of the four described estimation strategies.
Terrain-informed estimation eliminates more than half of the
errors resulting from the uniform propagation model. Sur-
prisingly, the sectorization and boundary averaging has little
effect in the GoogleWiFi network, but significantly impacts
the TFA network. Increasing the number of sectors from
10 per node to 36 per node eliminates this difference in the
TFA network. These results indicate that the TFA met-
ric boundary locations are correlated within approximately
10 degrees due to larger variations in tree foliage than in
the GoogleWiFi terrain. Note that grid sampling requires
approximately 100 measurements per km? in order for inter-
polation accuracy to be 80%. For assessment on a per-node
basis (e.g., for network upgrades), this represents a relatively
large cost increase as compared to estimation which requires
no additional measurements.
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Figure 7: Predictive accuracy for the TFA and
GoogleWiFi networks using uniform-propagation es-
timation, terrain-informed estimation, and ideal es-
timation.

We now study the causes of errors in our estimation frame-
work: monotonicity violations and the suboptimal choice of
sector boundary. Monotonicity violations result in mispre-
dictions even when the optimal sector boundary is chosen,
which is a limitation of any framework that assumes a con-
nected coverage region. The suboptimal boundary choice
means that Equation (1) leads to a suboptimal choice of
sector boundary location due to insufficient terrain feature
information. For 31% of the measured sectors, the terrain-
informed boundary estimation results in accuracy within 1%
of the optimal boundary location, but for the remaining sec-
tors, the terrain information is not sufficient for perfect es-
timation.



The probability of monotonicity violation is higher and has
a stronger dependence on distance in the TFA network. Fig-
ure 8 depicts the probability that a measurement farther
from the mesh node has a better signal strength than a
nearer measurement within a sector width of 0.1 degrees.
The difference between the two networks is in part due to
fact that the measured TFA network is mostly residential
blocks without line-of-sight, whereas the GoogleWiFi envi-
ronment features more open space and line-of-sight along
streets (where nodes are mounted on light posts). When con-
sidering optimal accuracy in 10 degree sectors, 20% of the
measured sectors in the GoogleWiFi network feature zero
monotonicity violations and perfect accuracy, whereas this is
true for only 1% of TFA sectors. Overall, non-monotonicity
contributes 10-15% average error, but with a large range
0-40% per sector. The average error is only slightly (3%)
higher for the TFA network, despite the greater violation
probability. The range in sector accuracy is significantly
smaller for TFA though, indicating that the GoogleWiFi
results in Figure 8 are averaged over a broader variety of
propagation environments. Note that we factor out tem-
poral fluctuations by disregarding an SNR increase of less
than 3 dB, as measurements show 90% of co-located mea-
surements vary less than 3 dB.
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Figure 8: Violations of the monotonicity property.
The probability that signal strength increases by
more than 3 dB when increasing radius in a sector
of width 0.1 degrees.

Requiring metric regions to be connected incurs
a minimal penalty in accuracy. In particular, we found
that adding a small number of disconnected metric regions
has a minor benefit (1.5%), even with ideally chosen bound-
aries. That is, if we allow a metric sector to also have one
disconnected section, we then need to find three boundaries.
Our experiments show that even for boundaries that are
found optimally, the mean accuracy increases from 89.8%
to 91.4%. The remaining errors occur due to noisy metric
boundaries.

4.3.2 Refinement with Measurements

We now study the refinement phase of our evaluation
framework using Algorithm Refine-Estimate. Our experi-
ments consider 10 degrees wide sectors with more than 50
measurement points spread throughout the sector. The sim-
ple ray-tracing algorithm is also tested, with measurements
taken within each sector to refine local values of Cy terms.

The boundary refinement heuristic outperforms simple ray-
tracing for improving accuracy with measurements. Figure
9 depicts accuracy as a function of the measurement budget
and indicates that the refinement stage improves average es-
timation accuracy from 82% to 88%. The ideal estimation
line indicates the accuracy with all measurements known
and the optimally chosen sector boundary. Localized refine-
ment of Cy terms has small impact, indicating insufficient
map granularity for simple ray-tracing techniques. The gain
from the measurement refinement phase is less than the gain
of exploiting terrain information for estimation, underscor-
ing the importance of accurate o and Cy parameters.
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Figure 9: Accuracy of boundary refinement algo-
rithm for the coverage region of mesh nodes in
GoogleWiFi.

Our framework’s upper bound on the number of measure-
ments is four times the actual needed number of measure-
ments. There are two reasons Algorithm Refine-Estimate
requires fewer measurements: boundary refinement stops
early when a boundary is found and multiple mesh nodes
are measured at a location with no extra cost. The first
condition occurs because 30% of sectors require no more
than three measurements to find the sector boundary. If the
algorithm takes advantage of existing measurements within
15 meters of the estimated boundary instead of requiring a
new measurement, the total required measurement budget
is reduced by one-fourth. Note that we assume that taking
an SNR measurement at point p from node n is approxi-
mately the same cost as taking an SNR measurement at p
to all nodes n € NV.

Terrain parameter Cy estimation requires a moderate (10-
20) number of measurements per terrain feature type. Equa-
tion (1) requires an estimated value of the average path loss
exponent o and the weight, C, per terrain feature, to be
determined as one-time overhead. We choose random mea-
surements from our full set of measurements to estimate the
average path loss a and the Cy value of each terrain feature
type. A moderately sized study of between 10 and 20 mea-
surements achieves predictive accuracy within 2% of the best
predictive accuracy. Note that there are six feature types in
the terrain map used for GoogleWiFi.

4.4 Modulation Rate Metric

The modulation rate metric captures the expected physical-
layer modulation rate in use at a location, a value that de-
pends on SNR and the rate selection protocol, e.g., ARF.



This section uses the GoogleWiFi network to compare the
boundary refinement algorithm in two scenarios: 1) mea-
surement of the modulation rate directly and 2) refinement
using coverage measurements and then mapping coverage to
modulation rate boundaries. The second approach involves
empirically mapping the modulation rate threshold 6, to the
coverage threshold 6. which corresponds to the desired mod-
ulation rate region. We next describe in more detail these
two approaches.

We use our SNR measurement set for the first refinement
approach, estimating the modulation rate using a piecewise
linear function to map SNR value to expected modulation
rate. We use this piecewise linear function to map the rela-
tionship for the specific network environment, though ideal-
ized values of this mapping can be obtained from the card
manufacturer’s specifications. The constant C'. is a stepwise
function with two cutoff SNR values, C; and Cs. Below C4,
the expected rate is the minimum (1 Mbps), and above Ca,
the expected rate is the maximum (54 Mbps). Between C}
and C2, linear interpolation is used to find the expected
rate. In our measurement study, we found C1 = 14 dB and
Cy = 32 dB.

For the second refinement approach, the modulation rate

measurements consist of an SNR value and the current physical-

layer modulation rate, sampled after transmission of peri-
odic ICMP packets. These measurements reflect the extent
of cross-traffic and hidden terminal effects in the Google-
WiFi network, which add noise to our linear mapping func-
tion. As expected, experiments show the modulation rate
metric to be monotonic on average with respect to the cov-
erage metric and therefore, to distance also.
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Figure 10: Comparison of boundary refinement

strategies for modulation rate metric in Google-
WiFi, either directly measuring modulation rate val-
ues or estimating from coverage measurements.

Directly measuring modulation rate regions is less accu-
rate than first using measurements to refine coverage esti-
mates. For metric boundary estimation, we compare two
approaches: 1) directly measuring modulation rate for each
sector and 2) measuring SNR and then estimating modu-
lation rate sector boundaries from refined coverage bound-
aries. Figure 10 evaluates the improvement due to mea-
surement refinement on the mean predictive accuracy of the
modulation rate region of a metric sector of width 10 de-

grees. Direct measurement is worse because the extra vari-
ation in modulation rate at a given SNR value adds noise
and makes it harder to find the refined boundary.

Note that MAC and network-layer metrics require associ-
ating with the mesh node in question and small data trans-
missions, both of which significantly increase the required
measurement time and further motivate using coverage mea-
surements to refine boundary estimates. The one-time over-
head of experimentally characterizing the mapping between
SNR and modulation rate is approximately 20 random mea-
surements to achieve within 1% of the best estimation accu-
racy.

45 Coverage Redundancy Metric

The estimation and refinement framework greatly increases
accuracy at predicting 2-redundancy. We estimate the met-
ric redundancy region using the estimated coverage metric
regions, as it requires only coverage information. Figure
11 compares the distribution of the k-redundancy metric
in the GoogleWiFi network with the estimated values from
our framework and the uniform propagation model. For
predicting if a location is 2-redundant, this translates to a
uniform propagation accuracy of 50% and an accuracy of
84% for our framework. The requirement to correctly pre-
dict multiple regions at each point accentuates the difference
in accuracy between our framework and uniform propaga-
tion estimation. The relative accuracies in TFA (not shown)
are approximately identical.
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Figure 11: Distribution of the number of covering
mesh nodes for each location in the GoogleWiFi net-
work, comparing measured values with estimations.

5. DEPLOYMENT EVALUATION

Having validated the assessment framework, we next ap-
ply the framework and measurement study to investigate the
two deployed networks, TFA and GoogleWiFi. Specifically,
we evaluate the effect of deployment density on coverage
holes and study client association policies to understand the
load-balancing qualities of deployments.

5.1 Coverage Holes and Deployment Efficiency
Here, we evaluate the efficiency of the two deployments

in terms of the density of deployed nodes and their chosen

locations. We first consider the sizes of the coverage holes in



both networks, and then focus on the effect of deployment
density on the likelihood of coverage holes.

Half of measured locations without coverage are small holes,
within 10 meters from a covered location. We consider a
measured location to be a coverage hole if it is not within
3 meters of a location in the coverage region of any mesh
node. The size of a coverage hole is the distance to the
nearest covered location. Contrasting estimation techniques,
grid sampling with 30 measurements per km? predicts three
times more coverages holes than exist, whereas our frame-
work overpredicts by only 25%. This means that grid sam-
pling approach would conclude that coverage holes are 3x
more common and two to four times as large on average.

We next examine the distribution of deployment densities
in each network with the goal of understanding how to best
deploy a network in terms of the coverage metric region. We
compare two deployment strategies: minimizing the maxi-
mum distance to the nearest mesh node and the looser re-
striction of deploying at a specific localized node density. We
reverse engineer both the TFA and GoogleWiFi networks to
determine how to improve their deployment strategy.

We calculate the deployment density at a client location
as local node density per km? within a circle around the
client point with radius of 400 meters. Note that this is a
client-centric definition of density, which allows us to evalu-
ate locations of different density in a non-uniformly deployed
mesh network. We focus on this specific localized region size
because our data shows that less than 2% of client locations
are covered only by a node farther than 400 meters away.
Because of the different technology, antenna gains, heights,
and propagation environment, the two networks are not ex-
pected to require the same node density. The mean density
in TFA is 11.2 nodes per km?, with standard deviation of
7.4. The mean density in GoogleWiFi is 17 nodes per km?,
with standard deviation of 5.9.
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Figure 12: Probability of a coverage hole as a func-
tion of local deployment density for both networks.

Deploying to minimize the distance from a client to the
nearest mesh node leads to a 3x over-deployment in TFA.
In Figure 12, we plot the probability of a coverage hole as a
function of deployment density at a client point. If we seek a
deployment with 90% coverage, we must keep the maximum
distance to a mesh node below 130 meters. This corresponds
to a deployed density in a square grid of approximately 30
nodes per km?. However, Figure 12 indicates that only 11

nodes per km? are required to attain 90% coverage. This
difference is due to the fact that coverage is often provided
by the mesh node that is not closest to the client. For a
deployment in progress, our assessment framework can be
used to determine the best density, per the above analysis.

In the GoogleWiFi network, we find the deployment den-
sity has little impact on coverage hole probability above 8
nodes per km?. Considering the nearest node deployment
strategy, we find that in order to limit the probability of
a coverage hole to less than 10% in GoogleWiFi, the dis-
tance to nearest node must be less than 80 meters, which
translates to a deployment density of approximately 77 mesh
nodes per km?. This density is dramatically higher than the
actual deployed density of 17 nodes per km?, although the
actual probability of a coverage hole is approximately 25%.
In order to achieve 90% coverage, client-side solutions, such
as use of higher-gain antennas, may be more cost effective
than the very dense deployment.

Coverage holes in Google WiF'i are correlated between mesh
nodes, leading to significantly higher (4x) node density re-
quirements to decreases holes from 25% to 10%. Surpris-
ingly, the TFA network’s coverage-hole probability quickly
approaches zero as density increases, whereas the Google-
WiFi network does not, indicating that further increasing
node density has diminishing impact on coverage hole prob-
ability in GoogleWiFi. For all client locations, we exam-
ine each mesh node within 400 meters and the boundary
distance for the sector that the location belongs to. For
the coverage holes, we found that 75% of these sectors had
boundary distance of at least 50 meters less than the average
boundary distance of 178 meters. Therefore, the Google-
WiFi environments presents a significantly greater deploy-
ment challenge. In general, improving the coverage of de-
ployed mesh networks is challenging because the coverage
holes are small and spread out, requiring many new node
locations to remove them.

5.2 Load-Balanced Node Deployment

We next investigate the load-balancing qualities of a de-
ployment through investigating association policies for clients
in range of multiple mesh nodes. The objective is to show
that given standard client association policies, there is signif-
icant imbalance in the number of client locations each mesh
nodes serves. We compare association based on the client’s
strongest signal strength with an ideal policy that jointly
considers signal strength and load balancing.

To study this issue, we first define a method for calculating
the load on each mesh node under a hypothetical population-
based model. In particular, we consider the offered load of
a location 7 to be a function of the client demand ¢; (in kilo-
bits) at ¢ and the expected time required to serve a fixed
sized packet, d;, (measured in seconds per kilobit) at 7. Our
framework provides the estimate for d; based on the pre-
dicted modulation rate at location ¢, which is in turn based
on the SNR at the location. Let @, represent the set of
clients associated with mesh node n, then the load of node
nis L(n,Qn) = Zz‘eQn d;qi;. As load is measured in time
units, if L > 1, then the mesh node is saturated. In this
case, the clients’ served load will be the offered load ¢; di-
vided by L. Otherwise, the full client demand, g;, is served.
We further assume that the access tier for each mesh node
operates on an independent frequency channel, and hence
there is no interference between nodes.



We now describe two client association policies. Most ex-
isting clients employ a policy in which they compare received
SNR values of all APs within range and associate to the node
with the strongest SNR. For a load-balanced policy, we for-
mulate and solve the association problem as a maximum flow
problem on bipartite graphs [17] with one set of nodes as the
client locations, the other set as mesh node locations, and
an edge in the graph when a client node is in the coverage
region of a mesh node. The supply is d; x ¢; for every client
node ¢, the capacity of each edge emanating from ¢ is also
d; X q;, and the demand is 1 for every mesh node.

For our experiment setup, we vary the client demand from
100 kbps to 1 Mbps, and use the mapping from SNR to mod-
ulation rate presented in Section 4. The term d; is calculated
as twice the inverse of the modulation rate to also account
for overhead.
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Figure 13: Percentage gain in average client
throughput from using a centralized, load-balancing
association scheme versus realistic, local association
with strongest SNR.

Maz-flow load-balanced association improves total client
throughput by 20% in Google WiF'i as compared to strongest-
SNR association. Figure 13 shows 15-20% gain in average
client throughput for the centralized, load-balancing pol-
icy versus local association. In a regular grid deployment,
the local policy results in the same association as the load-
balanced policy due to the fact that the same number and
quality (SNR) of clients associate with each node. The loss
in throughput of the strongest SNR policy is then also the
loss due to the uneven deployment of mesh nodes, result-
ing in some overloaded nodes and some under-loaded nodes.
Note that the most gain available is at moderate offered
loads, where there is significant load imbalance on mesh
nodes and some nodes have available capacity. The gain
in the TFA network is less because a larger fraction of the
client nodes have only one possible node to associate with.

6. RELATED WORK

Measurement Strategies. While many previous stud-
ies present measurements of the coverage of a wireless net-
work [1, 3, 6, 11, 20], none have proposed a framework
for choosing the number and location of measurements to
characterize a metric region via a small number of mea-
surements. Ray-tracing performs detailed simulation and
prediction of physical-layer propagation in order to estimate

physical-layer propagation [11, 19, 20]. However, ray-tracing
requires highly detailed information about the environment,
such as building materials and thickness, to achieve high ac-
curacy in outdoor environments. Other studies [1, 3] have
used a small set of coverage measurements to estimate pa-
rameters such as path loss and shadowing, but assume a
uniform propagation (circular) model.

Physical Layer Models. The Okumura model [16] and
related models [5] for outdoor propagation are widely-used
empirical models to predict signal propagation in urban en-
vironments. However, they apply to different carrier fre-
quencies, coarse-grained terrain features, and clients located
more than 1 km from the base station. Our terrain-informed
estimation builds upon indoor propagation modeling tech-
niques that use attenuation factors derived from building
blueprints to show wall locations, thickness, and material
[14]. A good review of such propagation modeling tech-
niques is in [8]. In contrast, our terrain-informed estimation
is a sectorized technique applied to outdoor environments
via the “push-pull” boundary refinement technique. More-
over, we operate with finer-grained resolution of terrain fea-
tures and utilize training measurements to obtain localized
estimates of attenuation.

Cellular Coverage. Cellular networks feature different
frequency bands, antenna heights, and propagation environ-
ments, but still encounter related coverage assessment prob-
lems. Previous studies have addressed how to characterize
coverage in a cellular network with a small number of sig-
nal strength measurements [15] and in the presence of ran-
dom shadowing (violations of coverage monotonicity) [2, 18].
However, prior work uses uniform propagation models and
does not provide strategies for selecting measurement lo-
cations. Likewise, “diamond-shaped” coverage regions were
studied for Manhattan cellular networks [7], with exhaustive
measurements used for a downtown-only environment.

WLAN and Mesh Measurement Studies. For in-
door WLAN deployments, exhaustive measurements have
been compared to propagation modeling tools [21]. Other
measurement studies in mesh and WLAN networks focused
on client usage and mobility [6, 12] or protocol performance.
Finally, a related problem is node placement, i.e., choosing
locations to deploy wireless APs: this problem has been for-
mulated as an optimization problem requiring as input ex-
haustive measurements [10]. In contrast, our framework can
provide input to a placement algorithm with substantially
smaller measurement overhead.

7. CONCLUSION

In this paper, we present a measurement framework to ac-
curately characterize the metric regions of a mesh node using
only a small number of measurements. The primary metric
we consider is coverage (signal strength), and the technique
of estimating and refining metric regions can be extended
to other monotonic metrics. We also use our framework to
study modulation rate and redundancy metrics.

We utilize publicly available terrain maps to improve cov-
erage estimation, showing that coarse-grained maps signifi-
cantly improve estimation accuracy. This improved estima-
tion leads to fewer needed measurements to refine the esti-
mated region boundaries. We further examine the sources
of estimation error and find that coverage monotonicity vi-
olations account for an average of 10% error, although with
much greater variation per sector in GoogleWiFi than in



TFA. With our framework, we then reverse-engineer the
TFA and GoogleWiFi deployments and find that improv-
ing the performance of GoogleWiFi through the addition
of nodes would be highly problematic (costly) due to the
prevalence of numerous coverage holes having small area.
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