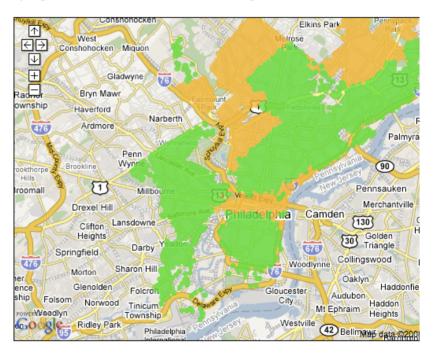

Adding Capacity Points to a Wireless Mesh Network Using Local Search

Joshua Robinson, Mustafa Uysal, Ram Swaminathan, Edward Knightly Rice University & HP Labs

INFOCOM 2008


- Goal: provide Internet connections with low cost
 - Access tier: clients connect to a mesh node
 - Backhaul tier: mesh nodes multi-hop to a capacity point
 - Capacity tier: traffic aggregates to wired Internet
- Capacity tier utilizes directional wireless, WiMAX, or fibers
- Capacity points (gateways) co-located with mesh nodes

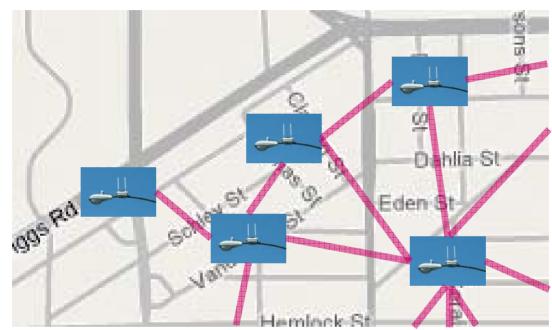
Wireless Network Evolution

- Network <u>capacity</u> needs to increase over time
 - New users, increasing traffic, changing usage patterns
- Increasing capacity of a mesh network
 - Nodes: increase coverage area of the network
 - Capacity points: increase overall throughput with Internet
 - Radios: increase throughput
- Our focus: incremental deployment of capacity points

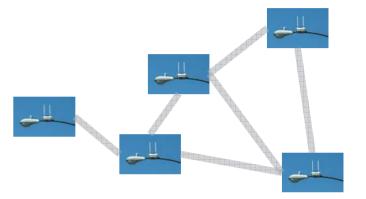
Map Legend: EarthLink Service Area Coming Soon

Choosing Capacity Point Locations

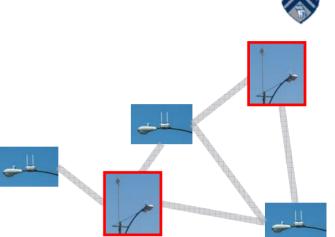
- <u>Capacity points</u>: mesh nodes connecting wireless mesh to the Internet
- Capacity point placement determines:
 - Path lengths of the wireless routes
 - Amount of wireless contention
 - Available bandwidth to/from Internet
 - Two main challenges:
 - 1. How do we define and compute capacity?
 - 2. How do we best place new capacity points at a subset of the existing mesh nodes?


Formulation: For a given budget constraint, deploy new gateways to maximize the gain in network capacity

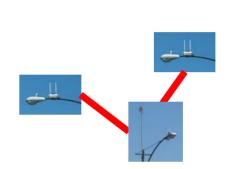
Capacity Term to Maximize?


- <u>Need</u>: to compare potential placements
- Challenges: different link speeds, population density, and contention matrices
- Gateway-limited fair capacity is the aggregate rate at which data flows through capacity points

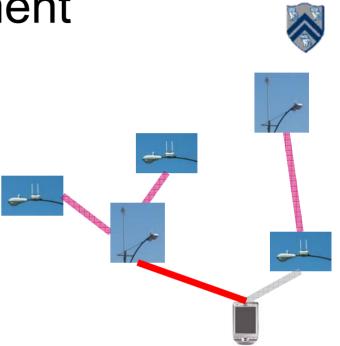
Gateway-limited Fair Capacity


- Wireless interfaces on gateways are bottleneck resource
 - We focus on <u>access</u> networks without peer traffic
 - Traffic aggregates to gateways
- Constraints on gateway interfaces
 - Per-user fairness ensures equal time for longer flows
 - Gateway airtime balances between tx/rx and defer
 - How often contending links are active --> gateway defer time
- We formalize efficient technique to calculate capacity which is suitable for local searching

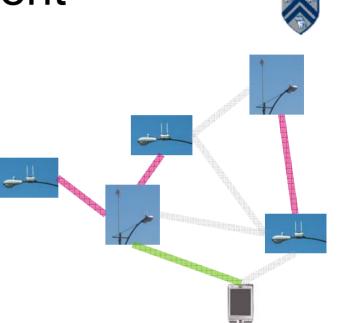
- To maximize network capacity
- Three coupled sub-problems:



- To maximize network capacity
- Three coupled sub-problems:
 - 1. Selection of gateway locations



- To maximize network capacity
- Three coupled sub-problems:
 - 1. Selection of gateway locations
 - 2. Backhaul-tier routing choices



- To maximize network capacity
- Three coupled sub-problems:
 - 1. Selection of gateway locations
 - 2. Backhaul-tier routing choices
 - 3. Client association with mesh nodes

- To maximize network capacity
- Three coupled sub-problems:
 - 1. Selection of gateway locations
 - 2. Backhaul-tier routing choices
 - 3. Client association with mesh nodes
 - Present two local search algorithms
 - Use local search to test good choices for (1)
 - Solves (2) and (3) as an assignment problem
 - Build on algorithms for Facility Location problems
 - Incorporate wireless contention effects

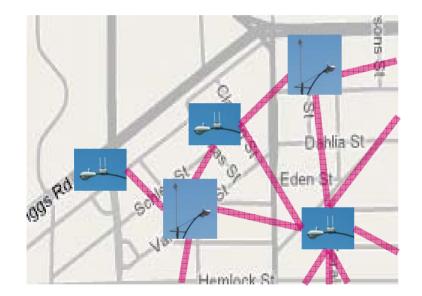
Facility Location	Gateway Placement
Choose facility locations to minimize sum of facility cost and service cost*	Choose gateway locations to maximize capacity or minimize gateway cost
	Choose facility locations to minimize sum of facility cost

* *k*-Median problem fixes number of facilities at *k*

Facility Location	Gateway Placement
Choose facility locations to minimize sum of facility cost and service cost	Choose gateway locations to maximize capacity or minimize gateway cost
All client demand is served by facilities	Per-user fairness constraint
	Choose facility locations to minimize sum of facility cost and service cost All client demand is served

	Facility Location	Gateway Placement
Objective:	Choose facility locations to minimize sum of facility cost and service cost	Choose gateway locations to maximize capacity or minimize gateway cost
Demand constraint:	All client demand is served by facilities	Per-user fairness constraint
Capacity constraint:	Facility capacities are not exceeded	Gateway wireless capacities not exceeded, but are unknown a priori due to dependence on routing

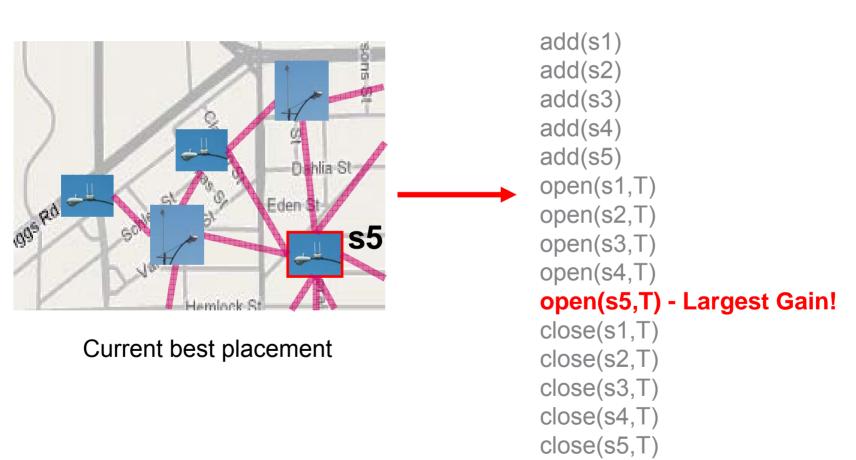
	Facility Location	Gateway Placement
Objective:	Choose facility locations to minimize sum of facility cost and service cost	Choose gateway locations to maximize capacity or minimize gateway cost
Demand constraint:	All client demand is served by facilities	Per-user fairness constraint
Capacity constraint:	Facility capacities are not exceeded	Gateway wireless capacities not exceeded, but are unknown a priori due to dependence on routing
Cost function:	Service costs in metric space	Capacity does not satisfy triangle inequality



	Facility Location	Gateway Placement
Objective:	Choose facility locations to minimize sum of facility cost and service cost	Choose gateway locations to maximize capacity or minimize gateway cost
Demand constraint:	All client demand is served by facilities	Per-user fairness constraint
Capacity constraint:	Facility capacities are not exceeded	Gateway wireless capacities not exceeded, but are unknown a priori due to dependence on routing
Cost function:	Service costs in metric space	Capacity does not satisfy triangle inequality

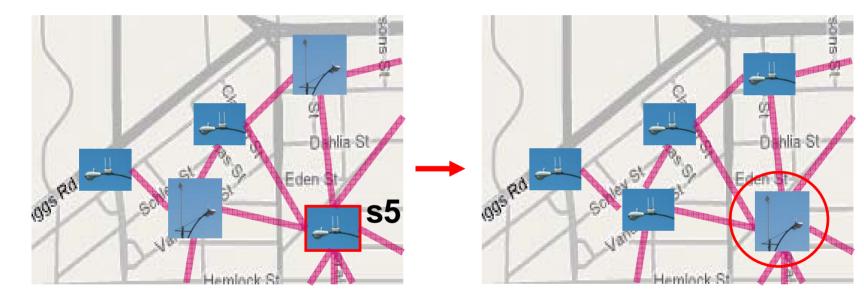
- Both problems are NP-hard
- Local search algorithms well-suited for facility location

Local Search Operation: Primitives


Current best placement

open(s,T) - open gateway at mesh node s and close gateways at mesh nodes in set *T*

add(s) close(s,T) swap(S,T)


Local Search Operation: Search

Search and evaluate:

Local Search Operation: Update

Current best placement

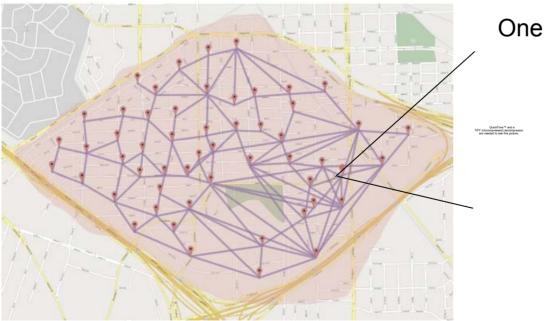
New best placement

And repeat....

MinHopCount Algorithm

- Uses add(), open(), close() local operations to maximize capacity
- Challenge: metric service cost function
 - Exponential number of open(s, T) and close(s, T) operations
 - Use wireless hop count as cost function to find good values of T
 - Employs results on $(9 + \epsilon)$ algorithm by Pál et al (2001) for Capacitated Facility Location to find set T
- Configurations violating budget constraint not allowed
 - Makes the gateway placement problem harder
 - No provable optimality bounds
- Challenge: unknown gateway capacities
 - Iteratively improve estimate of gateway wireless capacities

MinContention Algorithm

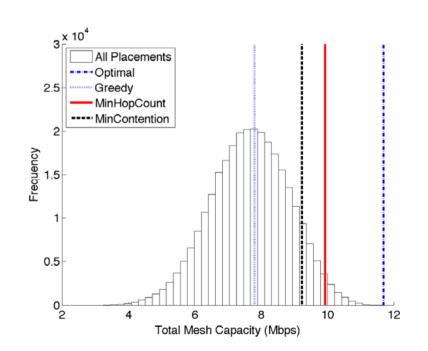


- Uses swap() local operation to minimize <u>network-</u> wide contention
- Challenge: metric service cost function
 - Link weight as *contention* region size obeys triangle inequality
 - Exploits results on $(3 + \varepsilon)$ algorithm by Arya et al (2001) from Uncapacitated *k*-Median problem
 - Minimizes the average size of contention regions for all nodes with constant-factor approximation

Houston Neighborhood Deployment

- Evaluate algorithms on Technology For All (TFA) network topology
- Multi-hop IEEE 802.11 wireless mesh network covering 40,000 residents, currently at 3 km²
 - 18 nodes deployed, expansion to 53
 - tfa.rice.edu for more info

One wired aggregation point


Plus new virtual gateways

TFA Expansion Scenario

- Placing 4 new gateways in 53-node expanded network
- All placements evaluated via brute force
- MinHopCount performs better with smaller budgets
 - Inter-gateway contention limitation
- MinContention performs better in regular topologies
 - Irregular contention throughout network
- Up to 50% gains available from our algorithms

Conclusions

- We define an efficient technique for calculating gatewaylimited fair capacity
- We present two polynomial-time local search algorithms for gateway deployment
 - Incorporating wireless contention effects

Questions? Joshua Robinson jpr@rice.edu