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Abstract— Wireless mesh network deployments are pop-
ular as a cost-effective means to provide broadband con-
nectivity to large user populations. As the network usage
grows, network planners need to evolve an existing mesh
network to provide additional capacity. In this paper, we
study the problem of adding new capacity points (e.g., gate-
way nodes) to an existing mesh network. We first present a
new technique for calculating gateway-limited fair capacity
as a function of the contention at each gateway. Then, we
present two online gateway placement algorithms that use
local search operations to maximize the capacity gain on
an existing network. A key challenge is that each gateway’s
capacity depends on the locations of other gateways and
cannot be known in advance of determining a gateway
placement. We address this challenge with two placement
algorithms with different approaches to estimating the un-
known gateway capacities. Our first placement algorithm,
MinHopCount, is adapted from a solution to the facility
location problem. MinHopCount minimizes path lengths
and iteratively estimates the wireless capacity of each
gateway location. Our second algorithm, MinContention,
is adapted from a solution to the uncapacitated k-median
problem and minimizes average contention on mesh nodes,
i.e. the number of links in contention range of a mesh
node and the number of routes using each link. We
show that our gateway placement algorithms outperform
a greedy heuristic by up to 64% on realistic topologies.
For an example topology, we study the set of all possible
gateway placements and find that there is large capacity
gain between near-optimal and optimal placements, but the
near-optimal placements found by local search are similar
in configuration to the optimal.

I. INTRODUCTION

Multi-tier wireless mesh networks are being deployed
in many cities in order to provide ubiquitous Internet
access [5]. A mesh network’s directional links and gate-
way nodes that connect the wireless mesh with the wired
Internet are critical capacity points as their location and
quantity determines the maximum throughput supported
by the network. Namely, the placement of these points
determines the hop-length of the paths in the network,
the amount of congestion, and the available bandwidth
to and from the Internet. Prior work has shown how
capacity scales asymptotically with the number of gate-
ways and nodes [10], but does not consider how to
choose gateway locations in specific topologies. Like-
wise, greedy heuristics [4] and local search operations
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[14] have been developed for gateway placement, but
neither incorporates wireless contention nor studies in-
cremental deployment.

In this paper, we study the gateway placement problem
and then present and evaluate two local search algo-
rithms. The gateway placement problem is related to the
facility location and k-median problems and is NP-hard.
Consequently, we develop local search approximation
algorithms in order to 1) provide the ability to apply
local changes when incrementally upgrading a network
without recomputing the full placement, and 2) provide
polynomial time approximation schemes.

First, we propose an efficient technique to incorpo-
rate the effects of wireless contention and calculate
the gateway-limited fair capacity of a wireless mesh
network. While previous work provides a computational
framework for capacity [7], we focus here on access
networks without direct client-to-client communication,
i.e., networks in which all traffic traverses the gateway.
Thus, capacity points necessarily carry more traffic than
other mesh nodes, and consequently we define gateway-
limited capacity in terms of the contention experienced
at each gateway. Our calculations are suitable for local
search where a large space of possible operations must be
considered and, for optimization purposes, can be sepa-
rated into two components: path lengths and contention.

We next present two local search-based gateway place-
ment algorithms adapted from the facility location prob-
lem. A key challenge is that the contention at each
gateway depends on the full routing matrix. There-
fore, each gateway’s capacity depends on the locations
of other gateways and cannot be known in advance
of determining other gateway placements. To address
this challenge, our algorithms feature two different ap-
proaches to estimating the unknown gateway capacities.
The first algorithm, termed MinHopCount, adapts a local
search algorithm for the capacitated facility location
problem [13] and iteratively estimates the unknown
wireless gateway capacities. The idea of local search is
to carefully choose a set of gateways to close and open
a set of new gateways subject to capacity and budget
constraints in order to minimize the objective of interest,
i.e. the average hop count. Lowering hop count generally
(but not always) increases capacity and has the addi-
tional critical property of obeying the triangle inequality.
The second placement algorithm, MinContention, adapts
from a solution to the uncapacitated k-median facility



location problem and minimizes the average contention
for all mesh nodes with provable approximation ratio of
3 + ε [2], where the ε parameter determines accuracy
and runtime. To minimize contention, we assign link
weights equal to the amount of contention caused by
each link, considering contention on all nodes instead of
only gateways. Further, the link weight is the union of the
set of nodes in contention range of either end of the link,
which preserves the triangle inequality for swap()-based
local search. This local search is similar to open/close
except that a swap must open an equal number of
gateways as it closes. The MinHopCount algorithm is
more general and can handle gateways with non-uniform
costs, whereas the MinContention algorithm has a built-
in budget constraint, and therefore retains a provable
constant-factor approximation ratio.

Lastly, we evaluate the performance of our algorithms
in realistic topologies. We first validate that our capac-
ity calculation techniques correctly rank placements, as
compared to ranking placements based on measurement
data from an operational urban mesh network. To com-
pare our placement algorithms, we perform numerical
simulations on the topologies of three currently deployed
mesh networks: Technology For All (TFA), Chaska, and
GoogleWiFi.1 We find that our local search algorithms
perform up to 64% better than a greedy algorithm and
produce placements within 2% of the optimal placement
found via exhaustive search. We also study the degree
of similarity between gateway placements using a hop-
distance metric that measures the amount of change
needed to transform one gateway placement to the other.
We find that the relative distance between the optimal so-
lution and near-optimal solutions found by local search is
small, which indicates the suitability of local operations.

The remainder of this paper is structured as follows.
Section II introduces our mesh capacity calculation and
formally defines the gateway placement problem. Section
III presents the two local search algorithms and Section
IV describes our evaluation of the placement algorithms.
Section V discusses related work, and then Section VI
concludes.

II. ADDING CAPACITY POINTS

In this section, we first introduce a new technique for
calculating the gateway-limited fair capacity of a mesh
network. We then formulate the problem of upgrading
the capacity of an existing mesh network. For ease of
discussion, we refer to all capacity points as “gateways”
whether they are a true wireline gateway or a wireless
link that does not interfere with the remaining mesh
network’s resources, e.g., a directional WiFi or WiMax
link to a wireline gateway (see TFA for an example of
directional WiFi gateways).

1See tfa.rice.edu, www.chaska.net, and wifi.google.com.

In this work, we consider multi-tier wireless mesh
networks, consisting of a backhaul tier for interconnec-
tion between mesh nodes, an access tier for connection
between mesh nodes and clients, and a capacity injection
tier to wirelessly connect the mesh nodes to the wired
Internet. Further, we focus on a single-radio, single-
channel backhaul and access tier architecture, although
it is a simple extension to separate access tier contention
and consider dual radio platforms that have a separate
access and backhaul radio. We let the user-specified
cost of installing a physical wire or dedicated wireless
connection be different for each location and allow non-
uniform capacities at each location.

A. Gateway-Limited Fair Capacity

The capacity calculation captures the impact of wire-
less contention on the utilization of the wireless medium
in a computationally efficient manner. Our capacity
calculation considers access networks where all traffic
to and from clients must traverse a gateway, making the
gateways bottlenecks in the network. Therefore, we focus
on the performance of the gateway nodes in our defini-
tion of the gateway-limited fair capacity. The advantages
of this model over previous, more general computational
models [7] are 1) exact computation in polynomial time
(important for evaluating many possible local search
operations) and 2) extension to local search algorithms
by enabling tractable approximations which optimize
over one of two components of capacity definition: route
lengths or contention.

A key aspect of our technique for calculating ca-
pacity is to model the wireless interface of a gateway
as alternating its time between transmitting to one-
hop neighbors, receiving from one-hop neighbors, and
deferring to other neighbors within contention range. The
time a gateway spends deferring to ongoing transmis-
sions in contention range reduces the gateway’s available
capacity. Therefore, we define the gateway-limited fair
capacity as a function of the airtime utilization of the
gateways, which depends on the routes used and amount
of time the routes lead to a gateway deferring. In this
definition, gateway capacity is significantly affected by
fairness. For example, allocating all resources to one-hop
flows and none to multi-hop flows will yield the greatest
capacity but would be undesirable as large portions of
the network would be non-functional. Consequently, we
impose a per mesh node fairness constraint, requiring
that each mesh node receive its fair share of the wireless
airtime at the gateway nodes.

More formally, let n be the total number of mesh
nodes in the network, and m the total number of links.
Define G as the set of all potential gateway locations,
which is a subset of M, the set of all mesh nodes.
Mesh node i has a traffic demand d[i] that represents
the aggregate demand of all the end-clients associated
with it. We represent the routes used by each mesh node



to reach one or more gateways as a two-dimensional
matrix R, where R[i, j] indicates the amount of node i’s
demand that traverses link j. We designate src(i) as the
access tier link for mesh node i and assign R[i, src(i)] =
d[i]. Our calculations ensure fairness by requiring that
λd[i] units of mesh node i’s demand are served by
gateways. The positive-valued λ parameter is uniform
for all mesh nodes and therefore leads to weighted fair
shares being enforced. We scale the demands with the λ
parameter such that they are feasible, and then find the
R matrix as solution to a transhipment problem opti-
mizing capacity, potentially allowing multipath routing.
We represent the contention caused by each link in a
two-dimensional matrix I, where I[i, j] indicates if link
j is in contention range of node i. The I matrix notation
extends to links that, due to physical layer shadowing,
only cause contention during a fraction of time.

Our technique for calculating the amount of time a
gateway is idle due to contention proceeds as follows.
A link induces contention equal to the number of mesh
nodes that cannot be actively transmitting or receiving
when the link in question is active. Consequently, the
total contention on a gateway depends on how many
routes use the link and how much demand is routed over
the link. We use contention as a simplification of interfer-
ence, as we are concerned specifically with situations in
which a node is forced to defer due to either concurrent
transmission or interference. We assume a perfect MAC
protocol without unfairness or hidden terminal effects.

The total contention on a gateway node g ∈ G caused
by link j is

∑n
i=1 R[i, j] × I[g, j]. The total contention

on gateway g, vg is then given by:

vg =

m∑

j=1

n∑

i=1

R[i, j] × I[g, j] (1)

The fair wireless capacity of a gateway is computed
as follows. Gateway g services total demand sg, which
is the sum of demands on all links incident to gateway
g, denoted by link(g):

sg =

n∑

i=1

∑

j∈link(g)

R[i, j] (2)

Expressing the capacity of gateway g as the amount of
wireless time vg required to serve sg units of time at the
wired interface, ug = sg/vg . Thus, the total gateway-
limited fair capacity is the sum of uj terms for all j ∈ G.

This sum is a lower bound of the actual gateway-
limited capacity due to potential double-counting of links
in contention with the gateway. This may occur if two
links that contend with a specific gateway are not in
contention with each other and can therefore be active
simultaneously. In this case, the gateway is deferring to
two links at once, whereas our calculation would count
separately the defer time for both links.

B. Gateway Placement Problem

We refer to the problem of deciding how best to place
a fixed number of additional capacity points in an exist-
ing mesh network so as to maximize the overall capacity
improvement as the gateway placement problem. It is
defined as follows. Let G be a (0, 1)-vector of size n that
indicates whether a given mesh node i is a capacity point
or not. On an operational mesh network, G[i] = 1, for
all i ∈ G. Let the monetary cost of installing a capacity
point i be f [i] and the set G0 represent the currently
deployed capacity points We define the total cost, C(G),
of installing new capacity points in the mesh network as:

C(G) =
∑

∀i/∈G0

f [i] ×G[i].

We express the gateway placement problem as maxi-
mizing the network capacity given a specified budget for
adding capacity points. Our formulation contrasts with
previous work ([4] and [14]) which does not directly
account for wireless contention effects or consider the
need for upgrading existing mesh deployments.

The placement problem is difficult because it requires
simultaneously solving three subproblems: 1) gateway
selection, 2) client assignment to gateways, and 3) route
selection. The approximation schemes we present in the
next section use local search techniques to decouple
these subproblems. The algorithms solve (2) and (3)
together (i.e., a transhipment problem) in order to evalu-
ate the effectiveness of all possible local operations and
thereby choose operations that best solve (1).

III. SOLVING THE PLACEMENT PROBLEM

The gateway placement problem involves maximizing
capacity directly, which can be expressed as an integer
program (IP). We instead propose two local search
based algorithms due to the following disadvantages
of an IP: (i) an IP cannot solve the problem exactly
in polynomial time, (ii) prior work has shown that a
simplified version of the problem, capacitated facility
location, has an unbounded integrality gap [12], and
(iii) an IP is not suitable for online computation, e.g.,
it precludes the case of incrementally adding gateways
without recomputing the locations of every gateway.

We therefore take an alternate approach of maximizing
capacity with local search algorithms. We present two al-
gorithms that optimize one of the two major components
of our capacity calculation: the size of the routes in R

or the impact of contention in I on mesh nodes. We
first do this by minimizing hop count as a capacitated
facility location problem with budget constraint and
solving with local operations open() and close() and
iterative capacity estimation. Our second approach is
to minimize average contention as an uncapacitated k-
median problem, solved by local swap() operations.



A. Solving by Minimizing Hopcount

We first review the facility location problem and then
describe how we map the gateway placement problem.

1) Facility Location Problem: The gateway place-
ment problem is a generalization of the capacitated fa-
cility location problem [13], which is defined as follows.
Let M be a set of customers, and W be a set of facilities.
Each customer i ∈ M has a demand d[i]. Each facility
j ∈ W , has a maximum capacity u[j] and a facility
cost f [j]. The cost matrix C[i, j] represents the cost
of serving one unit of demand from customer i by the
facility j. A facility can satisfy a customer demand only
if it is open. The facility location problem then is finding
a set of facilities to open, G, with minimum total cost:

∑

j∈G

f [j] +
∑

j∈G, i∈M

C[i, j] ×X[i, j]

where X[i, j] denote the fraction of demand from cus-
tomer i served by facility j.

In our formulation of the gateway placement problem,
the facilities map to capacity points and the customers
correspond to mesh nodes. The key differences are:

• The wireless capacity of each gateway depends
on nearby contention, which in turn depends on
the placement of other gateways. Therefore, the
capacities are not known a priori because it would
require knowledge of the final placement.

• Defining a cost function for serving mesh node i by
gateway j does not preserve the triangle inequality.
This cost is equal to the fair share of mesh node i at
gateway j. If the customer and facility cost metrics
do not preserve the triangle inequality, no constant
factor approximation algorithms are known.

Despite these differences, the local search algorithms
developed for the facility location problem apply to
the gateway placement problem (both differences are
addressed in our adaption of the algorithm, as described
later).

2) Local Search Operation: We next describe the
local search algorithm [13] for the facility location
problem in the context of the gateway placement prob-
lem, highlighting modifications to account for gateway
placement specifics. We denote s as a node and T as a
set of nodes, which we describe how to find later in this
section. The algorithm can do one of three operations to
improve the solution: add(s) installs a gateway at node
s, open(s, T ) installs a gateway at node s and removes
gateways at all nodes in set T , and close(s, T ) removes
the gateway at node s and installs gateways at all nodes
in set T .

Let us refer to the set of available gateway locations
as W , which is a site-specific subset of all mesh node
locations. Let G represent the set of installed gateway
locations throughout the execution of the algorithm, i.e.,
G[i] = 1, if i ∈ G. The local search algorithm operates

as follows. We start with an arbitrary valid gateway
placement and perform one of the three operations,
add(), open(), and close(), to improve the quality
of the solution. To ensure the algorithm terminates in
polynomial time, we require that each step lowers the
cost by at least c(S)/p(n, ε), where p(n, ε) is a chosen
polynomial in n and 1/ε. Here, ε > 0 indicates the error
tolerance, and the algorithm’s run time is polynomial in
1/ε.

We now review in more detail each local search
operation. Because all possible combinations for set T
cannot be evaluated in polynomial time, the algorithm
instead finds a good choice for the set T as the solution
to a knapsack problem, where T is found as the set of
items to put in the knapsack. The operations proceed as
follows:

• add(s) – For all non-gateway nodes s, evaluate
the cost to open a gateway at s ∈ W . This cost
evaluation requires solving a transhipment problem
to find optimal routing matrix R for the set of all
installed gateways in G ∪ {s}.

• open(s, T ) – Install gateway at node s ∈ W and
remove gateways in set T ⊆ G − {s}, reassigning
mesh nodes served by T to the gateway at s. Note
that gateway s could already have been installed
with some unused capacity.

• close(s, T ) – Remove gateway s ∈ G and install a
set of gateways T ⊆ W−{s}. Then reassign routes
destined to s to gateways in T without any effect
on mesh nodes served by other gateways.

Let M be the set of all mesh nodes
Initialize u[i] values to gateway wired capacities
// Note that valid here means satisfies budget

Do {
// Run local search algorithm with u[i] capacities
Start with arbitrary, valid solution G

Do {
Foreach s ∈ M

Find valid add(s)
Find valid open(s,T )

where T is solution to knapsack problem
with knapsack size of u[s]

Find valid close(s,T )
where T is minimal covering knapsack
with knapsack size of u[s]

Calculate ∆ cost for all valid operations
Apply operation to G with best ∆ cost

} while (∆ cost ≥ C(G)/p(n, ε))
Output G as locally optimal solution

Calculate capacities û[i] of placement G

Update ucur[i] to new lower bound if û[i] < uprev [i])

} while (
PN

i=1 uprev [i] − ucur [i] ≥ φ)

Output G as solution

TABLE I
PSEUDOCODE FOR MINHOPCOUNT ALGORITHM.



3) Adapting MinHopCount: We next describe our
modifications to allow the facility location algorithm to
minimize hop count subject to a budget constraint and
gateway capacities. We then describe our technique for
iteratively estimating gateway capacity.

We use hop count as the cost function in our problem,
which is a first-order approximation of the capacity,
i.e. it reduces the contention in Eq. 1 by reducing the
value of R entries. Another important advantage of this
metric is that it preserves the triangle inequality, which
is necessary for provable bounds on the local search
algorithm’s performance.

We also add a budget constraint to the MinHopCount
algorithm, making the problem we solve a generalization
of the capacitated k-median problem (more general
because we allow all gateway costs, f [i], to be different).
While there are no known constant factor approximation
algorithms for the capacitated k-median problem, we
show through evaluation that the algorithm performs
close to optimal in realistic topologies (see Section IV).

The local search operations find a placement subject
to gateway capacity constraints, but these gateway ca-
pacities are not known a priori because they depend on
the full gateway placement. As shown in Table 1, we use
lower bound estimates for the gateway capacities, u[i],
and iteratively update the gateway capacity lower bounds
after successive runs of the local search algorithm. The
algorithm terminates when the current sum of the lower
bound capacity estimates ucur[i] does not decrease by
more than user-chosen parameter φ from the previous
iteration’s estimate, uprev [i]. Intuitively, we capture the
lower bound capacity of a near-optimal placement, which
is a tighter bound than the worst-case lower bounds of all
placements. The run time of the MinHopCount algorithm
is polynomial in 1

ε and 1
φ .

B. Solving by Minimizing Contention

Our second local search algorithm, MinContention,
finds the gateway placement that minimizes the average
contention in the network. We first describe the k-median
problem and review a local search algorithm using local
swap() operations. Second, we discuss how to map the
gateway placement problem to this algorithm such that
we find the placement with the lowest average contention
region size.

1) The k-Median Problem: The k-median problem is
a variant of the facility location problem where there are
only a fixed number k of facilities that can be opened.
The objective is to minimize the cost of connecting
all clients to a facility. We consider the uncapacitated
version of the problem as there is currently no known
constant factor algorithm for the capacitated k-median
problem. In contrast, there is a local search algorithm
for the uncapacitated k-median problem with a locality
gap of 3+2/p [2], where the locality gap is the maximum
difference between the worst local optimum and the

global optimum and the parameter p controls the number
of gateways the algorithm considers for simultaneous
swapping. This locality gap results in an approximation
ratio of 3 + ε. This local search algorithm is based
on repeatedly swapping p open gateways for p unopen
gateways until no swaps can improve the solution. A
larger p value leads to more accurate results but with
exponential increase in running time.

The main idea of the MinContention algorithm is to
install k gateways to minimize the average contention
on the mesh nodes, which is a function of which links
contend with each node and how often those links are
used in routes. As per our definition in Section II, our
actual objective is to minimize the total contention on
gateways, but we cannot do that because it requires
knowing the full gateway placement to correctly as-
sign link weights. We therefore solve the problem of
minimizing the contention on all nodes as a means
of approximating the gateway contentions. Note that
a disadvantage of this algorithm over the previously
discussed MinHopCount algorithm is that it requires
identical gateway costs.

2) Swap-based Local Search: The MinContention
algorithm is summarized in Table 2. The cost of a
placement is the sum of the active link weights, which
are each assigned to be the total number of mesh nodes
in contention range of the link. Additionally, we scale
the shortest paths’ weight in proportion to the node’s
traffic demand. This allows us to take client demands
into account and favor installing gateways nearer to mesh
nodes with greater demand.

Find a feasible starting placement G

Do {
Find all valid swap(S,T )

where S is set of p gateways to open
and T is set of p gateways to close

Calculate ∆ cost for each operation
Apply swap with largest positive ∆ cost

} while (∆ cost ≥ C(G)
p(n,ε)

)
Output G as locally optimal solution

TABLE II
PSEUDOCODE FOR MINCONTENTION ALGORITHM.

3) Triangle Inequality for Contention: In order for the
above algorithm to have a provable locality gap of 3 +
2/p, the link weights must obey the triangle inequality.
As previously stated, the assigned link weight is the size
of the union of the sets of nodes in contention range with
each endpoint of the link, which we now show preserves
the triangle inequality.

Consider a triangle of three mesh node locations, a,
b, and c, and the resulting three links between them,
labeled AB, AC, and BC. The contention caused by
link AB is less than the sum of the contention of links



AC and BC for the following reason. Let function Γ()
represent the number of nodes in contention with a node
or link. By definition, we have that link AB’s contention
consists of the nodes in contention range of nodes a and
b, resulting in Γ(AB) = Γ(a) ∪ Γ(b). The contention
caused by links AC and BC is (Γ(a)∪Γ(c)) + (Γ(b)∪
Γ(c)) and is smallest when node c contends with no
mesh nodes. Therefore the contention is lower-bounded
by Γ(a)+Γ(b), which is greater than or equal to Γ(AB),
ensuring that the triangle inequality is preserved.

IV. EVALUATION

In this section we examine the performance of our
placement algorithms. We first examine the proposed
technique for capacity calculation with measurement
data. We next study the algorithms on regular grid
topologies and then real topologies that underlie three
deployed mesh networks, and finally study the charac-
teristics of an optimal placement.

A. Validating Capacity Calculation

We first show the ability of our proposed capacity
calculation technique to accurately rank gateway place-
ments from highest to lowest total capacity. We compare
our calculation with measured throughput data from the
operational TFA mesh network, in order to show that a
better placement as per our capacity calculation is also a
better placement as per measurements. TFA is a multi-
tier mesh network providing Internet access in a densely
populated, single-family residential, urban neighborhood
with 18 deployed mesh nodes [3]. In the topology, two
mesh nodes are connected if their link is on average
usable at greater than 1 Mbps.

At the time of these experiments, the TFA network,
featured two capacity points: gateway GW-A is a true
wireline gateway and gateway GW-B is connected to
GW-A via a directional link. We measure three different
capacity point configurations: GW-A only, GW-B only,
and both GW-A and GW-B. We observe the network
during weekday peak hours for each of the three config-
urations, each measured on a subsequent weekday. For
example, on one day, the directional link was disabled,
making GW-B a non-gateway mesh node. The measured
throughput is the peak rate (in Mbps) of data flow
between the TFA network and the Internet over the ob-
served time period. The traffic measured is the naturally
occurring usage of the network. The throughput of the
network with both gateways peaks at 2.2 Mbps. The GW-
A configuration has a peak throughput of 1.46 Mbps and
the GW-B configuration peaks at 610 Kbps. Using our
technique in Section II, we calculate gateway-limited fair
capacity of the GW-A-only configuration as 1.5 Mbps,
the GW-B-only configuration as 1.35 Mbps, and both
gateways together as 1.75 Mbps. Our technique predicts
the correct ranking, with the GW-A-only configuration

achieving 11% greater capacity than the GW-B-only
configuration. The actual throughput values are lower
than our capacity calculations due to several factors not
included such as control overhead, MAC unfairness, and
non-backlogged traffic sources.

B. Performance of Placement Algorithms

We now study the performance of MinHopCount and
MinContention algorithms presented in Sections III-A
and III-B on grid-based and realistic topologies. For all
experiments, we consider an 802.11b system with the
single-link wireless throughput assumed to be 6 Mbps.
All mesh node locations are fixed and gateways can be
installed on any mesh node. We compare the algorithms
against a greedy placement strategy which repeatedly
places the gateway that leads to the largest reduction
in average path length.

1) Regular Grid Topology: We first examine the
placement algorithms on a 7×7 regular grid topology. A
mesh node communicates directly with at most 4 neigh-
bors and contends with all two-hop neighbors. The only
significant distinction between nodes are those that are
on the borders. Figure 1 shows the performance of the
greedy, MinHopCount, and MinContention algorithms as
a function of how many new capacity points are added.
For a network of this size, we also include the optimal
placements found using brute force search.
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Fig. 1. Capacity of placements arrived at by algorithms on a square
grid topology with 49 mesh nodes.

For adding between three and six gateways, the Min-
HopCount and MinContention algorithms find place-
ments with capacities at least 86% and 77% of the
optimal respectively, while the greedy placement is at
least 72% of the optimal. The MinHopCount algorithm
performs better in this regular topology because con-
tention is uniform, leading to fewer or no situations
where a greater hop count leads to better capacity. We
also find that the each algorithm sometimes performs
slightly worse with more gateways due to the fact that
the hop count and contention metrics they use are only
a first order approximation of the mesh capacity. Note



that, in this topology, the marginal benefit of each
new gateway decreases due to the increasing level of
contention between gateways. This effect is significant
as gateways serve the most traffic and therefore cause
more contention than other mesh nodes.

2) Real-World Topologies: We next consider our
placement algorithms on the topologies of three currently
deployed mesh networks: TFA, Chaska, and Google.
These topologies present a new challenge in that the
connectivity and contention matrices are no longer uni-
form for each mesh node. In these topologies, the
local search algorithms have greater gain over greedy
heuristics than in grid topologies because the irregular
contention leads to situations where longer routes result
in higher capacity. For each topology, we fix a number of
already installed gateways and focus on upgrading with
new gateways.

For the TFA topology, we are able to directly measure
the signal strength between each pair of nodes. The
topology is then a combination of this information with
empirically measured communication and contention
thresholds. For the Chaska and Google topologies, we
must estimate the connectivity information with AP
coordinates and manufacturer’s information, introducing
possible errors. While the true connectivity matrix is
not observable externally, we assume a link exists if the
physical distance is less than 200 meters.

The first deployed topology corresponds to the 195
node Chaska topology [1]. We begin with four known
gateways and place additional capacity points in the
network using the greedy, MinHopCount, and MinCon-
tention algorithms, plotting the results in Figure 2. Op-
timal does not appear here as the network size prohibits
exhaustive search. The MinContention algorithm typi-
cally performs the best, up to 64% better than the greedy
placement, because the local search improves upon pre-
vious choices it made and the algorithm considers the
amount of contention caused by a path and not just the
path length. For this topology, the MinHopCount per-
forms up to 30% better than greedy, but its performance
becomes similar to greedy beyond 15 gateways. We
suspect that the MinHopCount’s capacity estimates, u[i],
degrade for more than 15 gateways for this topology,
and it is the main reason that its performance becomes
similar to greedy.

The second deployed topology considered in Figure
2 is the 447-node Google Mountain View network.
In this network, we consider the current configuration
of 59 gateways and use our algorithms to determine
upgrade locations. MinContention outperforms greedy
by up to 8%, though not with small budgets. Conversely,
MinHopCount performs best with small budgets, but is
approximately 10% lower capacity than greedy when
considering larger budgets. This is a result of our simple
capacity estimation strategy, which does not take into
account contention between gateways. Note that our

topology estimation results in a conservative and regular
contention pattern in this topology.
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Fig. 2. Performance of placement algorithms on Chaska (top) and
Google (bottom) topologies.

The third deployed topology we consider is the TFA
network expansion, consisting of the currently deployed
18 nodes and 35 planned nodes. The current topology
features two capacity points: one wired gateway and
one directional antenna connection. Figure 3 presents
the results of adding a small number of gateways to the
projected TFA topology while holding fixed the current
two gateways. Also included are the optimal values
found via exhaustive search.
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Fig. 3. Comparison of MinHopCount and MinContention algorithms
with optimal placement for TFA-projected topology.

The local search algorithms closely approximate the
optimal solution for the addition of up to 3 gateways;
MinHopCount and MinContention solutions are within
97% and 96% of the optimal. As the budget increases,
the solutions decline to as low as 80% of the optimal,
with MinHopCount declining more. Greedy performs
worst with small budgets, but improves as the marginal
gain of additional gateways declines and allows the
greedy to make up for early suboptimal choices. The
MinHopCount algorithm performs worse with five gate-
ways than with four due to the fact that iterative capacity



estimation does not directly take into account inter-
gateway contention and hence MinHopCount does not
perform as well when gateways contend with each other.
In other words, it conservatively chooses longer paths
so as to ensure that gateway capacity constraints are not
violated.

In summary, we found that our local search algorithms
significantly outperform a greedy algorithm, by up to
64%, and this gain is more pronounced on irregular
topologies. For small budgets, the algorithms achieve
very close (≥ 97%) to optimal capacities and for larger
budgets, MinContention performs best.

C. TFA Placements Case Study

We next study in greater detail the TFA network
using an exhaustive study of all possible placements.
We find that while the best placements have similar
configurations, i.e. roughly the same gateway locations,
there is a large capacity gap between near-optimal place-
ments and the optimal. In other words, the optimal
placement has significantly higher capacity than a near-
optimal placement, demonstrating the need for good
approximation algorithms. Further, the configuration of
gateways in the optimal placement is similar to a near-
optimal placement, indicating the applicability of local
search operations for finding optimal placements. We
consider the case of adding four additional capacity
points in the projected TFA topology.

1) Distribution of Placement Quality: We present in
Figure 4 a histogram of all possible ways to install
four additional capacity points. Four candidate locations
have been chosen based on availability of structures to
mount antennas and we compare this manual placement
with our algorithms. To understand the space of possible
placements, Figure 4 is a histogram of the capacities
resulting from all possible gateway placements, found
via exhaustive search. The average placement results in
a capacity of 7.7 Mbps with standard deviation of 1.2
Mbps and the optimal placement is 11.7 Mbps.

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
x 10

4

Total Mesh Capacity (Mbps)

F
re

qu
en

cy

 

 

All Placements
Optimal
Manual
Greedy
MinHopCount
MinContention

Fig. 4. Histogram of all placements of 4 new gateways in the projected
TFA topology, along with the capacities found by our algorithms.

The difference in capacity between the mean place-
ment and the optimal placement is a factor 1.7×, indi-
cating the need for a good approximation algorithm. The
MinHopCount and MinContention algorithms achieve
85% and 79% of the optimal configuration respectively,
whereas the greedy placement achieves less than 60% of
the optimal. Also, MinContention with p = 1 gives the
same capacity as with p = 4 (maximum p possible in
this case because p ≤ k.

We also consider the percentage of all possible place-
ments with higher capacity than the placement arrived at
by our algorithms for this TFA scenario. MinHopCount
achieves 85% of the optimal capacity, but only 0.1%
of all possible placements result in higher capacity. For
MinContention and greedy, approximately 1% and 15%
of all placements result in higher capacity respectively.
These results demonstrate the importance of a good
approximation algorithm as there are large capacity gains
due to finding better placements from among the top
0.1% of all placements.

2) Characterizing Similarity of Placements: In this
section, we examine the characteristics of the solutions
found by the local search algorithms in comparison to
the optimal placement. We define a simple metric to
capture the amount of similarity between any two gate-
way placements: the hop distance between the gateways
in the two placements. The distance is calculated as
the minimum hop cost to move the gateways in one
placement to match the gateways in the other. This is
equivalent to a transhipment problem where the demands
are the capacities of the gateways in one placement, and
the capacities correspond to the gateways in the second
placement.

Fig. 5. Scatter plot for all possible gateway placements in the TFA-
proj topology with 4 new gateways.

Figure 5 plots the ranges of capacities obtained when
adding four additional gateways to the TFA network as
a function of their distance from the optimal placement
using this metric. We find that there is a strong corre-
lation between distance from the optimal placement and
the capacity with a correlation coefficient of −0.807. In
other words, the higher capacity placements are most
likely to be similar in configuration to the optimal



placement. A carefully designed local search algorithm
can take advantage of this similarity to find the optimal
placement. In the example of adding four gateways, we
find that the distance between the second-best placement
and the optimal placement is four hops. This means that
the second-best placement is a minor perturbation of the
best placement, and therefore the optimal placement can
be found from the second-best placement with a local
operation that moves gateways a combined total of four
hops (not four hops per gateway). Both of our algorithms
find placements within six hops from the optimal.

V. RELATED WORK

A gateway placement algorithm using a greedy heuris-
tic has been presented [4] to serve neighborhood net-
works, as well as a local search algorithm [14] for
minimizing a combined cost and hop count metric.
These approaches differ from ours in that we 1) incor-
porate wireless contention, 2) consider deployed city-
wide mesh topologies, and 3) present two local search
approximation algorithms, one of which has provable
constant-factor approximation ratio. Others developed
general techniques to calculate network capacities with
interference [7] and incorporating multiple radios and
channels [8]. These techniques require solving linear and
mixed integer programs to find upper and lower capacity
bounds. In contrast, we present a simple technique
for exactly calculating gateway-limited fair capacity in
polynomial time.

The capacity of hybrid wired and wireless networks
has been studied in [10], though this study only provides
asymptotic bounds and does not address the gateway
placement problem. For regular topologies, [15] studies
the impact of gateway density on network capacity and
presents techniques to calculate connectivity to gate-
ways.

We adapt our algorithms from solutions to the related
capacitated facility location problem and uncapacitated
k-median problem. Constant-factor approximations are
known to exist for these problems using both local search
[2], [13] and LP relaxation methods [9]. The algorithms
we present can be improved with more sophisticated
local search techniques [11], [16] that achieve better
approximation ratios. For the closely related capacitated
k-median problem, there is a constant-factor algorithm
with up to 50× violation of capacity constraints [6],
making the algorithm too inaccurate for our purposes.

VI. CONCLUSIONS

We study the gateway placement problem, first in-
troducing a technique to efficiently compute gateway-
limited fair mesh capacity as a function of the contention
at each gateway. We then present two gateway place-
ment algorithms adapted from local search heuristics for
related facility location problems with provable perfor-
mance guarantees. The MinHopCount algorithm adapts

a local search algorithm for the capacitated facility
location problem and minimizes the average wireless hop
count for all paths in the network, iteratively estimating
the gateways’ wireless capacities. The MinContention
algorithm is adapted from a solution to the uncapac-
itated k-median problem and minimizes the average
contention region size within a provable approximation
ratio of 3 + ε. MinHopCount is more general and can
handle non-uniform gateway costs, while MinContention
is able to provide better performance guarantees. Our
numerical results on three real topologies show that our
algorithms outperform a greedy heuristic and achieve
close to the optimal capacity. Further, we show that near-
optimal solutions have similar gateway configuration as
the optimal, but the difference in capacity is large, which
supports the use of local search operations on near-
optimal placements.
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